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ABSTRACT. This study assessed the impact
of crop diversification within no-till crop
rotations on soil organic carbon and total
nitrogen stocks, as well as on labile (Carbon
and Nitrogen in the particulate organic
matter) and persistent (Carbon and Nitrogen
in the mineral-associated organic matter)
Organic matter fractions. The objective was
to identify practical indicators for monitoring
public policies promoting low carbon
emission agriculture. Field experiment was
conducted in 2014/2015 cropping season
using a complete random block design. Seven
treatments were evaluated: soybean/cotton
(CONTROL);  maize/soybean  (M/Sb);

soybean/maize+brachiaria (Sb/M+Br);
soybean/millet+brachiaria/crotalaria

spectabiliscotton (Sb/Mt+Br/CrsCt);
soybean/cotton/common beans/millet+
brachiaria (Sb/Ct/Cb/Mt+Br); millet-cotton/
soybean/maize/crotalaria  spectabilis  (Mt-
Ct/Sb/M/Crs); crotalaria-cotton/soybean/
sorghum-+brachiaria/crotalaria ochroleuca+
brachiaria (Cr-Ct/Sb/Sg+Br/Cro+Br).
Sampling was done in May 2020 on an Oxisol
in a neotropical savanna of the Central West
region of Brazil (Capivara Experimental
Research Farm of Embrapa Rice and Beans,
Santo Antonio de Goias, Goias State, Brazil).
Treatment comparisons were made after
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correction for equivalent soil mass per soil
layer. The C-POM, N-POM, C-MAOM, and
N-MAOM fractions were obtained through
granulometric physical fractionation. Total
SOC and SOC stocks were inadequate
indicators of the impact of crop rotations on
SOC. However, the distribution of C and N
among the soil organic matter (SOM)
fractions (C-POM, N-POM, C-MAOM, and
N-MAOM) was influenced by crop rotations.
Rotations with greater crop diversity,
including gramineae, had higher
concentration of C and N in the particulate
SOC (C-POM and N-POM). Differences in
rotation composition also affected the C to N
ratio, particularly in the POM fraction, which
was higher in rotations involving brachiaria
grass and maize. Most diversified rotations
contributed to maintaining higher C-POM
stocks.

Keywords: carbon and nitrogen stocks; crop
rotation; mineral-associated organic matter
(MAOM); Oxisol; particulate organic matter
(POM); zero-tillage.

INTRODUCTION

The need to reduce the level of
carbon dioxide (CO») in the atmosphere
by both reducing its sources
(anthropogenic emissions) and increasing
its sinks (sequestration of atmospheric
CO:s in terrestrial plants or soils) is on the
increase  worldwide. Scientists are
generating knowledge on the best ways to
manage croplands in order to meet the
growing demand for food and at the same
time increase carbon storage for extended
periods in cropping systems (Teluguntla
et al., 2015). Soil organic carbon (SOC)
sequestration on agricultural lands
contribute to enhance soil health,
improving the resilience of agricultural
systems, preventing soil degradation,
decreasing the costs of climate change
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mitigation and promoting increased food
security (Hoyle et al., 2011).

Soil  organic matter (SOM)
contributes to the formation of soil
chemical, physical (Madari et al., 2005)
and biological properties (Mendes et al.,
2005) as well as acts as major store and
source of plant nutrients. Soil organic
carbon (SOC) is the carbon component of
SOM that is present in organic
compounds of different stability,
depending on the structural properties
and protection of SOM (Mandal et al.,
2008, Simpson et al., 2007). The study of
SOC dynamics of agricultural soils can
provide important information on how to
manage such soils to increase C stocks
and promote C sequestration.

The SOC is vital to sustainable
agricultural productivity in tropical
regions, including in savanna
ecosystems. It plays an important role in
maintaining the productivity of tropical
soils through promoting biological
diversity by providing energy and
substrates for soil organisms.

Hence, SOC helps to maintain soil
quality and the critical functions of agro-
ecosystems. SOC has a direct influence
on soil quality, due to its effect on soil
properties (Wendling et al., 2010). Long-
term crop rotation, combined with no-
tillage (NT) can restore SOC levels,
which can lead to improved crop yields in
tropical soils (Freixo et al., 2002; Sa et
al., 2014; Sharma et al., 2013). SOC
plays key role in earth’s carbon cycle
since it accounts for the largest active
terrestrial pool of carbon (Le Quere et al.,
2018). Recently SOC has been associated
with sustainable strategies to mitigate the
emission of greenhouse gases (GHGs)
(Arunrat and Pumijumnong, 2017;
Ghimire et al., 2017;).
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In the agro-ecosystem, SOC
retention potential of soil depends on
several factors, including C input level
and type, soil use and management, and
vegetation type (Wiesmeier et al., 2019).
In cash crop production systems NT, crop
rotations that include cover crops or
green manure, application of manure or
crop/biomass residue and residue of
carbonized biomass or biochar are among
soil and crop management practices that
potentially improve SOC (Arunrat et al.,
2020; Boddey et al., 2010; Lal, 2011).
Cover crops and green manure used in
this study were Crotalaria ochroleuca,
Crotalaria spectabilis, millet
(Pennisetum glaucum), and brachiaria
(Urochloa ruziziensis).

These crops are commonly used in
rotations in Brazil due to their ability to
fix nitrogen, improve soil structure,
suppress weeds, and provide organic
matter Boddey et al. (2004). They also
help to enhance soil fertility and
contribute to sustainable agricultural
practices Sanchez et al. (2004).

The fractionation of SOM is a useful
method for detecting quantitative and
qualitative changes in SOC, as well as to
characterize  its  vulnerability to
decomposition (Janzen et al., 1992).
Fractionation procedures based on the
size or density of SOM and its position
within the soil structure enable the
assessment of labile pools of SOC that are
more sensitive to differences in soil
management, land use or cropping
practices than total SOC (Barrios et al.,
1996, 1997).

Tillage and notably NT, affects
many soil characteristics that may
influence nutrient availability, plant
growth and yield (Ernani et al., 2002).
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Under NT, the SOM accumulates in the
top few centimeters over time (Diaz -
Zorita and Grove, 2002; Selles et al.,
1997).

Tillage affects soil microorganism
dynamics negatively by destroying soil
structure, exposing the soil to changes in
temperature and the moisture regime.
Furthermore, anthropogenic climate
warming can increase SOC losses due to
increments in soil temperature, making
tillage effects even more severe.
Additionally, tillage reduces soil pH and
changes SOC and nitrogen cycles
(Behnke et al., 2020). Thus, feeding the
human population will require innovative
ideas that involve minimizing
conventional agricultural practices in
order to be able to use natural ecosystem
functions as much as possible. No-tillage
has a potential to increase microbial
biomass (Helgason ef al., 2010), improve
soil carbon (Lal et al., 2003), increase
mineralizable N (Spargo et al., 2011), soil
moisture (Ma et al., 2008) and enzyme
activities (Alvear et al., 2005). It is clear
that NT and diversification of crop
species in rotation can improve the soil's
physical, chemical and biological
properties. In fact, combining these two
agricultural practices could have positive
synergistic effects and improve soil
function and services (Acharya et al.,
2012, Veloso et al., 2018).

Long-term  experiments  have
increased worldwide because they are the
only means of identifying suitable early
warning and long-term indicators for
productivity decline and ecosystem
damage (Bessam and Mrabet, 2003), such
as SOC stocks. Thus the objective of this
study was to evaluate effects of crop
rotation intensification under no-tillage
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on soil organic carbon (SOC) stocks and
the labile and persistent C pools, of an
Oxisol in a long term field experiment
under edaphic and climate conditions of a
neotropical savanna, in the Central West
region of Brazil, in order to identify
practical indicators that can be used to
monitor public policies implemented to
promote low carbon emission agriculture.

The specific objectives are as
follows: a) Assessing SOC stocks. b)
Quantifying labile and recalcitrant SOC
pools. C) Identifying optimal crop
rotations that facilitate SOC accumulation.

MATERIALS AND METHODS

Study area and soil sampling

The study was conducted in 2020 as
part of a long-term experiment initiated in
2014 at the Experimental Farm (Capivara
Farm) of Embrapa Rice and Beans in
Santo Antonio de Goias, Goids State,
Brazil, in collaboration with Embrapa
Cotton. The area, preceding the study for
two years (2012/2013), was occupied by
Brachiaria pasture, and no information
was available on soil management and
corrections during that period. The soil in
the experimental area is classified as an
Oxisol (580 g kg™ clay). The climate at
the experimental station is humid tropical
with distinct dry and rainy seasons (Aw).
The annual mean temperature is 23°C,
and the average annual precipitation has
been 1503 mm over the last 35 years.

The experimental design adopted a
randomized block format with four
repetitions. Each experimental plot
measures 12 m in width and 14 m in
length. All crops were cultivated and
managed under rain-fed conditions
without the use of irrigation. The
experiment involved crop rotations
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featuring maize (Zea mays), aerobic rice
(Oryza sativa L), common bean
(Phaseolus vulgaris), cotton (Gossypium
herbaceum), soybean (Glycine max), and
various cover crops and green manure.
Soil management for all treatments
followed direct planting practices, with
no soil disturbance using discs, harrows,
or other mechanical equipment, except in
the sowing line.

Seven treatments were examined,
corresponding to rotation or succession
schemes for soybean, common bean, corn
(as the main crop and second crop), and
cotton (as the main crop and second
crop). The cover crops and green manure
in the rotation included Crotalaria
ochroleuca, Crotalaria spectabilis, millet
(Pennisetum glaucum), and brachiaria
(Urochloa ruziziensis). These crops are
commonly used in crop rotation in Brazil
due to their ability to fix nitrogen,
improve soil structure, suppress weeds,
and provide organic matter Boddey ef al.
(2004). They also help to enhance soil
fertility and contribute to sustainable
agricultural practices Sanchez et al.
(2004). Annually, soybeans and common
beans were sown in the spring between
late October and early November, with a
spacing of 45 cm between lines. Corn as
the main crop was sown in November,
while as the second crop, after soybean
harvest, typically in February, depending
on the sowing date, variety cycle, and
soybean harvest date. Cotton as the main
crop was sown between early December
and early January, and as the second crop,
after common bean or soybean harvest,
usually between mid-January and late
February.

Soil samples were collected in 2020
the 6™ year of the experiment at six soil
layers (0-10, 10-20, 20-30, 30-40, 40-50,
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50-60 cm). These layers were chosen
considering that carbon 1is typically
concentrated in the top 0-30 cm layers,
with stabilization occurring in the deeper
layers from 40-60 cm. Additionally,
cropping root systems can penetrate to
Im and beyond, impacting SOC.
Composite samples, consisting of three
sub-samples from each plot (in each
repetition), were air-dried and ground to
pass a 2-mm sieve to obtain the fine earth
fraction (< 2mm) of the soil. Gravels (soil
particles with a diameter larger than 2
mm) were not identified in this soil. The
fine fraction of the soil underwent
chemical and physical analysis. A portion
of each composite sample was finely
ground (> 180 pum) in preparation for
total soil C and N analysis. Undisturbed
soil samples were collected using
cylinders and an auger to determine soil
bulk density (BD).

Analyses and determinations

Total soil organic C and N were
determined using the Dumas method with
a Perkin Elmer CHNO/S 2400 I
Analyzer. This analyzer utilizes high-
purity gases such as Oxygen (for the
combustion chamber) and Helium
(transport gas). For analysis, 10-15 mg of
finely ground (>180 pm) soil samples
were weighed in a tin capsule using an
ultra-microbalance. Quality control was
maintained using Acetanilide and soil
standards. Each sample underwent
duplicate analysis, and the mean was
considered the result. The furnace
temperature was set at 971°C, and the
reduction column temperature was
maintained at 600°C.

Soil fertility analyses and soil
texture were determined as follows: soil
pH was measured using the electrode
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method (Thomas, 1996); phosphorus (P),
calcium (Ca*"), magnesium (Mg*"), and
potassium (K") were extracted using
diluted concentrations of strong acids
(0.05 mol L™" HCI +0.0125 mol L'
H,SO4; Mehlich 1) (Kuo, 1996).
Phosphorus was determined
colorimetrically, Ca** and Mg>" by
atomic spectroscopy, and K™ by flame
emission spectrometry (Wright and
Stuczynski, 1996). Aluminum (AI’) was
extracted using a KCl solution and
titrated with NaOH (Bertsch and Bloom,
1996). Soil texture was determined using
a hydrometer method with a standard
hydrometer Bouyoucos scale (Gee and
Bauder, 1986).

For bulk density (BD) analysis,
undisturbed soil samples were collected
using a metal cylindrical tube with a
diameter and height of 5 cm. The ratio of
oven-dry weight of the soil (dried at
105°C for 24 h) core to its total volume
yielded BD (kg dm™).

Soil carbon stock was calculated
using the BD of the whole soil (FAO,
2019) (Equation 1):

SOCi stock (Mgha! C) =

= O0CixBDix(1 - gGi) x tix 0.1
where:

e SOCi (Mg ha' C) is the soil organic
carbon stock of depth increment i;

e OCi (mg g' C) is the organic carbon
content of the fine earth fraction (< 2
mm) of the depth increment i;

e BDi (g cm™) is the mass of soil per
total volume of the soil sample of the
depth incrementi;

e oGi (g g') is the mass fraction of
coarse mineral fragment, thus (1-gGi) is
the mass fraction fine earth (g fine earth
g’ soil) of the depth increment i;

(1)
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e 7iis the thickness (depth, in cm) of the
depth increment i;

e and 0.1 is a factor for converting mg
cm™C to Mg ha' C.

Soil organic carbon stocks were
calculated after equivalent soil mass
correction, widely used in the literature
(Sisti et al., 2004), for the 0-30 and 0-60
cm soil layers.

Soil organic carbon fractionation

Physical fractionation of soil
carbon, was performed by adapting the
method described by Cambardella and
Elliot (1992) and Cotrufo et al. (2019),
calibrated for the specific soil of the
experiment. This method separates the
total organic matter into two fractions,
particulate organic matter (POM) and
organic matter associated with minerals
(MAOM), which intimately attaches to
the clay and silt mineral fractions.

Five grams of fine earth were placed
in 250 mL plastic bottles, and 30 mL of
sodium  hexametaphosphate at a
concentration of 5.0 g L' was added. The
mixture was supplemented with twelve
glass beads to enhance dispersion and
subjected to ultrasonic dispersion in a
horizontal shaker at 130 oscillations min™'.
This process allowed optimal soil
disaggregation due to the very high clay
content of 580 g kg-1. The resulting soil
was then digested in a 53 pum sieve and
washed with a weak jet of distilled water.
The total particulate organic matter
retained on the sieve (> 53 um) was dried
at 60°C, then ground in a porcelain
mortar and passed through a 0.149 mm
sieve, and analyzed for C and N
concentration (%) using an elemental
analyzer (LECO TruSpec CN). Stocks
(Mg ha') of particulate (POC) and
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mineral (MAOC) fractions of C and N
were calculated as described above.

The soil C/N ratio was calculated
according with Cotrufo et al. (2019) that
applied mass balance approach (Equation
2):

C/Nsom=C/Nuaom X fuaom+ )
+C/Npom X (1-fmaom)

where C/N SOM, C/NPOM and C/NMAQM are
the C/N ratios of SOM, POM and
MAOM, respectively, and fuaom is the
MAOM proportion of SOM.

Statistical analysis

The experiment was designed as a
Randomized Complete Block with 4
blocks. The PROC MIXED model (linear
mixed model) was employed for the
analysis of variance, with blocks
considered as a random effect in the
model. Treatment means were compared
to the CONTROL using the Dunnett test,
and differences were considered
significant at p<0.10.

RESULTS AND DISCUSSION

Soil texture and bulk density

The retention of Soil Organic Matter
(SOM) and, consequently, Soil Organic
Carbon (SOC) is influenced by various
soil and environmental factors. In the
agro-ecosystem, SOC retention potential
depends on factors such as C input level
and type, soil use and management, and
vegetation type (Wiesmeier et al., 2019).
Soil texture is a crucial factor affecting
carbon retention due to differences in the
specific surface area of soil fractions. The
specific surface area of clay is higher than
that of sand or silt, impacting the soil's
carbon sequestration potential (Zinn et
al., 2005).
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In this study, we assessed the
comparability of soil treatments by
examining soil clay levels, given that clay
dominates the soil texture. Statistical
analysis revealed differences between the
CONTROL and other treatments in four
out of 42 cases, considering treatment and
soil depth combinations. In these
instances, the treatments exhibited higher
clay content (6-10% higher) compared to
the CONTROL. Notably, variations in
clay content were observed at 0-10 cm,
20-30 cm, and 40-50 cm depths.
Treatments including Mt-Ct/Sb/M/Crs
and Crs-Ct/Sb/Sr+Br/Crs+Br showed
higher clay content compared to the
CONTROL at 0-10 cm and 40-50 cm
depths. At 20-30 cm depth, Sb/M+Br
exhibited the lowest clay content among
treatments, while Crs-Ct/Sb/Sr+Br/Crs
+Br showed the highest (Table I).

Although literature suggests that
increased diversity in crop rotation may
raise soil clay content by enhancing soil
organic matter return, this study did not
consistently observe such changes.
Considering the low occurrence and
small magnitude of changes in clay
content, we considered the treatments
comparable to the CONTROL.

Soil bulk density (BD) is influenced
by soil properties, including mineralogy,
chemical interactions, biological activity,
and composition. Soil management and
plant cover, however, have a more
immediate impact on BD. Differences in
BD between the CONTROL and
treatments were expected, particularly in
soil layers directly affected by practices
and plant root systems. BD is also a
crucial factor affecting SOC stocks. In
this study, BD varied among treatments
compared to the CONTROL at 40-50 cm
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and 50-60 cm soil depths. At 40-50 cm,
Sb/M+Br/Cro-Ct and Mt-Ct/Sb/M/Crs
differed  significantly = from  the
CONTROL, exhibiting lower BD values.
At 50-60 cm depth, all treatments varied
significantly, with the CONTROL
showing the highest BD and M/Sb and
Crs-Ct/Sb/Sr+Br/Crs+Br exhibiting the
lowest values (Table 2).

Diversified rotations resulted in
lower BD values, a trend observed in
other studies. More diversified rotations
tend to enhance SOC content and reduce
soil compactness. Liu et al. (2011)
demonstrated that a wheat-sweet clover
rotation increased SOC content and
decreased soil bulk density. Similarly,
Ibrahim et al. (2015) reported that a 4-year
rotation  system  and  no-tillage
significantly increased SOM compared to
a 2-year rotation and conventional tillage.
These results suggest that diversified
rotations contribute to improved soil
structure and reduced soil compaction,
ultimately enhancing SOC stocks. The
observed decrease in BD under more
diverse rotations aligns with the positive
impact of crop diversity on microbial
activity, SOM content, and aggregate
stability in the soil profile.

Soil carbon and
nitrogen concentrations

Table 3 and Table 4 report the
concentrations of total Soil Organic
Carbon (SOC) and total Nitrogen (TN),
respectively. The concentration of carbon
showed no significant variation among
the treatments at various depths, except at
0-10 cm where the Sb/M+Br treatment
varied from the CONTROL, exhibiting
the highest carbon concentration
(3.08%).
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This was followed by
Sb/Ct/Cb/Mt+Br (3.00%), while the
lowest value was observed in Crs-

Ct/Sb/Sr+Br/Crs+Br (2.29%). Literature
suggests that more diverse crop rotations
tend to have higher soil carbon and
microbial biomass, especially with the
inclusion of cover crops (McDaniel et al.,
2014).

However, the study did not observe
significant effects of diversified crop
rotations on carbon concentration, except
for the Sb/M+Br treatment at 0-10 cm,
which included Brachiaria grass known
for its ability to sequester and accumulate
substantial amounts of SOC.

Nitrogen concentration exhibited
significant variation only at the 30-40 cm
depth, where the Mt-Ct/Sb/M/Crs
treatment differed from the CONTROL,
showing the highest nitrogen value. In
other layers, treatments did not affect soil
TN  concentrations. In diversified
rotations involving a mix of grasses,
leguminous, and non-leguminous cover
crops, it would be expected that nitrogen
concentration increases due to the
influence of crop type on residue mass
and quality. Both residue quality and
mass contribute to nitrogen
immobilization in no-tillage systems,
influencing SOC stock changes. The
incorporation of legumes into pasture has
been shown to stimulate nitrogen
accumulation, emphasizing the
importance of crop type in nitrogen
supply and biomass production.

McDaniel et al., (2014) observed
that cover crop incorporation within
diversified crop rotations can increase
SOC and TN, particularly when
leguminous cover crops are present for
longer periods. Soil quality improvement
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and conservation benefits, including
nitrogen supply and carbon sequestration,
are associated with a mixture of grain
crops, leguminous, and non-leguminous
COVer crops.

Soil organic carbon
and total nitrogen stocks

Table 5 and Table 6 present SOC
and TN stocks, with no significant
difference  observed between the
treatments and CONTROL at the three
soil layers (0-30 cm, 30-60 cm and 0-60
cm). The experiment, initiated in the
2014/2016 planting season, was in its
sixth year at the time of sampling in May
2020. Slow SOC changes, even under
moderate conditions, can be challenging
to detect statistically, as observed in other
long-term experiments. The results align
with data from Denmark and England,
revealing slow changes in SOC levels
under temperate conditions in response to
alterations in land use.

For nitrogen stocks, all treatments
showed lower N stock compared to the
CONTROL at the 0-30 cm layer, except
for Mt-Ct/Sb/M/Crs, which exhibited the
highest value. At the 30-60 cm layer, all
treatments significantly differed from the
CONTROL, with lower nitrogen values.
The Soy/Cotton (CONTROL) treatment
had the highest nitrogen value, followed
by Mt-Ct/Sb/M/Crs, and the lowest was
in Soy/Corn.

Similarly, at the 0-60 cm layer, all
treatments showed significant variation
from the CONTROL, with the highest
value in the Soy/Cotton (CONTROL)
treatment, followed by Mt-Ct/Sb/M/Crs,
and the lowest in M/Sb. The lower
nitrogen stocks in the treatments
compared to the CONTROL may explain
the lack of explicit carbon accumulation
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relative to the CONTROL. Nitrogen
controls soil carbon accumulation
through their C:N ratio, which typically
falls between 8 and 16. Although a
mostly positive difference in SOC
accumulation between the CONTROL
and the treatments was observed, it was
not statistically significant at the chosen
probability level (10%).

The M/Sb treatment exhibited the
highest positive difference compared to
the CONTROL in both the 0-30cm and 0-
60cm  layers, while the  Crs-
Ct/Sb/Sr+Br/Crs+Br treatment recorded
the highest negative difference to the
CONTROL. At the 30-60cm layer,
Sb/M+Br1/Cro-Ct presented the highest
value, whereas Sb/Ct/Cb/Mt+Br had the
lowest (negative) value, followed by Crs-
Ct/Sb/Sr+Br/Crs+Br.

Numerous studies have illustrated
that no-till practices can enhance soil
carbon, particularly at the soil surface
(West and Post, 2002). Moreover,
research indicates that this rise in carbon
is linked to increased soil aggregation
(Cambardella and Elliott, 1992; Madari et
al., 2005; Six et al., 2000). Melero et al.
(2011) and Onunwa et al. (2020)
observed that management practices
influence the balance between input and
output in a system, impacting the rate of
organic matter decomposition. Wright
and Hons (2005) concluded that
employing appropriate land use and
management practices, such as no-till
(NT) and crop rotations, is crucial for
enhancing carbon sequestration and
accumulation potential in croplands.

Conversely, practices involving no
soil disturbance, coupled with high input
of crop residues from cover crops like
brachiaria and green manure (C.
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ochroleuca), are effective management
approaches for promoting soil carbon
sequestration (Bayer and Dieckow,
2020).

In general, treatments involving
both leguminous and non-leguminous
cover crops, especially soy and
brachiaria, exhibited the highest carbon
stock across various depths (0-30cm, 30-
60cm, and 0-60cm). The elevated carbon
stock in the upper 30cm signifies
substantial carbon storage in this soil
layer, particularly in NT systems
combined with crop rotation.

However, this stored carbon is
susceptible to loss if the upper 30cm soil
layer is disturbed. Additionally, the
presence of a high carbon stock in the 30-
60cm layer emphasizes the importance of
this depth in carbon storage.

Conversely, the existence of soil
organic carbon (SOC) in the lower (0-60
cm) soil layers indicates the significance
of deeper layers in preserving soil organic
carbon over extended  periods
(persistence of SOC).

Several studies have reported the
presence of relatively more SOC in upper
soil layers compared to lower or deeper
layers  (Griineberg et al., 2010;
Ehrenbergerova et al., 2016; Zadorova et
al., 2015). Crop rooting depth and root
mass likely influenced cumulative SOC
stocks at depth (Fan et al., 2016). Soil
organic carbon at deeper soil depths is
likely derived more from root inputs than
from aboveground biomass, although C
allocation from aboveground biomass
through bioturbation and possibly
preferential flow also plays a role in soil
C dynamics (Doran et al., 1984; Kéitterer
etal.,2011; Wilts et al., 2004).
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Particulate and mineral-associated
soil organic carbon and nitrogen

In the 0-10 cm layer, both
particulate carbon (C-POM) and nitrogen
(N-POM) content were higher in two
treatments compared to the CONTROL
(Soy/Cotton), namely Sb/Ct/Cb/Mt+Br
(1.67 g kg* and 0.104 g kg') and Crs-
Ct/Sb/Sr+Br/Crs+Br (1.498 g kg' and
0.093 g kg-1), as opposed to the
CONTROL (0.812 gkg™'and 0.051 gkg™)
(Table 9). For both C and N of mineral-
associated organic matter (C-MAOM and
N-MAOM), only one treatment varied
from the CONTROL, exhibiting the
highest values (29.927 gkg' and 2.213 g
kg-1,  respectively),  while  Crs-
Ct/Sb/Sr+Br/Crs+Br showed the lowest
values for both C-MAOM and N-MAOM
(21.403 g kg' and 1.632 g kgh).
Regarding the C to N ratio of POM (CN-
POM), Sb/M+Br/Cro-Ct (24.875) varied
from the CONTROL (16.186), having the
highest value, while the CONTROL itself
exhibited the lowest value.

No variation was  observed,
compared to the CONTROL, in the C to
N ratio of the whole soil or of the
MAOM. Similar to the C-POM content,
the C-POM stock was higher in the
Sb/Ct/Cb/Mt+Br and Crs-
Ct/Sb/Sr+Br/Crs+Br treatments than in
the CONTROL. There was no effect of
the treatments on the C-MAOM stocks in
this layer (Table 7).

In the 10-20cm layer, only one
treatment, Sb/Ct/Cb/Mt+Br, showed
variation from the CONTROL for both
C-POM and N-POM, exhibiting the
highest values (1.162 g kg™ and 0.069 g
kg'). For CN-POM, Sb/M+Br/Cro-Ct
(24.750) and Sb/M+Br (22.875) showed
variation with the highest values, while
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the CONTROL had the lowest value
(15.572). Similar to the C-POM
concentration, the C-POM stock was also
higher in the Sb/Ct/Cb/Mt+Br treatment
than in the CONTROL, and similarly to
the previous layer, there was no effect of
the treatments on the C-MAOM stocks
(Table 7).

In the 20-30cm layer,
Sb/Ct/Cb/Mt+Br (0.613 g kg'), Mt-
Ct/Sb/M/Crs (0.612 g kg'), and Crs-
Ct/Sb/Sr+Br/Crs+Br  (0.567 g kg")
showed significant variation from the
CONTROL (0.394 g kg') for C-POM,
with higher values. The highest value was
observed in Sb/Ct/Cb/Mt+Br, while the
CONTROL exhibited the lowest value.
For N-POM, only Sb/Ct/Cb/Mt+Br
(0.036 g kg') differed from the
CONTROL (0.019 g kg"), exhibiting the
highest value, while the CONTROL
showed the lowest. Only Sb/M+Br
differed from the CONTROL for CN-
POM (25.438) and CN-MAOM (12.664),
representing the highest value for CN-
POM while the lowest for CN-MAOM.
The C stock in the POM fraction of the
more diversified rotations
(Sb/Ct/Cb/Mt+Br, Mt-Ct/Sb/M/Crs, and
Crs-Ct/Sb/Sr+Br/Crs+Br) increased
(0.822, 0.859, and 0.740 Mg ha™,
respectively) compared to  the
CONTROL (0.547 Mg ha™). However,
the C stock in the C-MAOM fraction of
one of the diversified rotations (Crs-
Ct/Sb/Sr+Br/Crs+Br, 12.491 Mg ha')
decreased compared to the CONTROL
(17.023 Mg ha') (Table 7).

At  30-40cm, there were no
significant differences across treatments
for C-POM, C-MAOM, and CN-POM.
The N-POM, only in the case of
Sb/M+Br, was higher than the
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CONTROL. The N-MAOM was higher
than the CONTROL only in the Mt-
Ct/Sb/M/Crs treatment. Several
treatments had higher C to N ratios in the
whole soil and the MAOM fraction
compared to the CONTROL, mainly
those with corn or brachidria in the
rotation. There was no difference in C-
POM and C-MAOM stocks between the
CONTROL and the treatments (Table 7).

At 40-50cm, the difference between
the CONTROL and the other treatments
for the C to N ratio in the whole soil and
the MAOM fraction was no longer
present.

At 50-60cm, almost all the
treatments differed from the CONTROL,
except Sb/Ct/Cb/Mt+Br and Mt-Ct/Sb/
M/Crs, with low values for C-POM and
N-POM. The highest value was observed
in Sb/M+Br/Cro-Ct (1.808 g kg'C-
POM), while the CONTROL exhibited
the lowest value (0.184 g kg'C-POM).
Simultaneously, C-MAOM decreased in
the M/Sb, Sb/M+Br, and Crs-
Ct/Sb/Sr+Br/Crs+Br treatments. The C to
N ratio of the POM increased in all
treatments (from 13.063 to 16.844)
compared to the CONTROL (10.333);
however, there was no effect on CN-
MAOM or CN-Soil. The C-POM stock
increased, and the C-MAOM stock
decreased in various treatments relative
to the CONTROL (Table 7).

In the soil, although the proportion
of Particulate Organic Matter (POM)
associated with the sand fraction was
higher in the bulk soil, the majority of
Soil Organic Carbon (SOC) stock was
situated in the Mineral-Associated
Organic Matter (MAOM) fraction due to
higher MAOM-C concentration than
POM-C concentration. This phenomenon
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may be attributed to the soil texture;
clayey soils rich in Fe and Al oxides, as
well as kaolinite, contribute to enhancing
organic carbon stability through the
formation of organo-mineral complexes
(Roscoe and Buurman, 2003). This aligns
with previous studies (Bol et al., 2009;
Flessa et al., 2008) reporting that over
88% of SOC is found in the silt and clay
fraction. Guo et al. (2019) noted that in a
Vertisol, 74%-92% of SOC was
associated with MAOM. From a climate
change perspective, a larger carbon pool
in MAOM is more intriguing, as it
represents the soil's most stable and long-
term carbon reservoir compared to POM
(Lavelle et al., 2020).

SOC is a complex mixture of
heterogeneous organic materials that can
be separated into particulate or light
fraction and heavy fraction, free and
occluded, based on chemical-physical
characteristics and localization within the
soil structure (Gregorich and Ellert, 1993;
Janzen et al., 1992; Mendon¢a and
Matos, 2017; Sohi et al., 2001).
Agricultural practices affect the light or
free fraction more rapidly and sensitively
than the heavy, mineral-associated
fraction, as observed in this study. The
light fraction mainly comprises plant
residues, small animals, and
microorganisms, providing substrates for
microbial activity and acting as cohesion
material to bind soil aggregates (Mueller
et al, 1998; Sohi et al., 2005).
Diversified rotations, particularly those
including gramineous cover crops like
brachiaria grass and millet, demonstrated
improved Particulate Organic Matter (C-
POM and N-POM) in the upper soil
layers (0-10, 10-20, 20-30 cm).
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This suggests that these cover crops
efficiently contribute to fresh organic
matter input into the soil, given their high
C/N ratio (Carvalho et al., 2022) and
influence on maintaining POM values
(Cotrufo et al., 2013). The higher
concentration of C and N in the
particulate organic matter fraction is
likely due to the extensive root volume of
gramineae. The presence of these cover
crops, especially in rotations following
pasture, may have minimized POM loss
compared to the CONTROL.

Management systems such as no-
tillage and crop-livestock integration,
utilizing crop rotation along with cover
crops and pastures, can increase POM
levels (Komatsuzaki et al., Ohta, 2007;
Zilverberg, 2012). It is recommended to
use cover crops like brachiaria and millet
in diversified systems, as they provide a
more recalcitrant input of organic
material with higher POM contents.

The study observed that Iless
diversified rotations increased Mineral-
Associated Organic Carbon (C-MAOM)
and nitrogen (N-MAOM) at lower soil
depths, likely due to the physical and
chemical stability of mineral-associated
carbon. Crop rotations, especially those
with corn and brachiaria grass,
demonstrated a higher C to N ratio in the
POM fraction through the soil profile.
This higher C/N ratio, sustained by
continued input of high C/N ratio corn
and brachiaria tissues, is beneficial for
increasing the longer-term N stock of the
soil. Cover crops with more recalcitrant
characteristics, such as brachiaria grass,
help sequester carbon and balance the
mineralization process of soil organic
matter.
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CONCLUSIONS

The labile SOC fraction, the
particulate organic matter (C-POM),
isolated by physical fractionation based
on granulametric separation, was more
sensitive and efficient in describing the
effect of crop rotations of varying
diversity on SOC.

Because of the management history
of the area where the experiment was
installed, and which had pasture on the
experimental area before the
implementation of the long-term
experiment, our conclusions could be
drawn more on the effect of the crop
rotations on SOC after implementation of
rotation of annual cropping systems after
pasture, and less on the effect of the

cropping systems compared among
themselves.
Diversified crop rotations,

particularly those including leguminous
and non-leguminous cover crops, had a
significant impact on soil C and N
distribution among different fractions.
Gramineous cover crops, like brachiaria
grass and millet, contributed to improve
Particulate Organic Matter in upper soil
layers. The study recommends using
cover crops in diversified systems to
enhance soil organic matter and carbon
sequestration. Moreover, maintaining a
higher C/N ratio, especially with cover
crops like brachiaria, is crucial for
achieving long-term soil health and
sustainability.

As a final remark, it is important to
mention that pastures usually have
positive impact on SOC accumulation
when compared to annual crops. The
success of crop-livestock integration in
sequestering SOC is one of the practical
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advantages of including pasture in
intensified agriculture systems (Oliveira
et al., 2022). This study confirmed the
negative impact on SOC of cropping
systems that exclude cover crops.
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