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ABSTRACT. In this study, the 
spatiotemporal dynamics of the urban 
environment and thermal environment of 
Benin City are analysed. The maximum 
likelihood algorithm for land use and land 
cover (LULC) analysis was used to 
categorise Landsat images. The relative 
transfer equation (RTE) and land surface 
emissivity (LSE) approaches were used to 
retrieve the land surface temperature (LST), 
whereas the Cellular Automata-Markov 
(CA-Markov) algorithm was used to forecast 
the LULC for 2030. The findings reveal 
evolving LULC patterns over time. Built-up 
areas made up 19.66% of the total area in 
1990, bare ground made up 9.25%, and 
vegetation made up 71.08%. Built-up areas 
reached 23.40% in 2000, bare land reached 
12%, and the vegetation cover dropped to 

64.16%. In 2010, there was an increase in 
the proportion of built-up areas to 44.38%, 
the proportion of bare land increased to 
22.20%, and the proportion of vegetation 
decreased to 33.42%. Built-up areas reached 
61.79% in 2020, compared to 22.29% for 
bare land and 61.79% for vegetation. 
Regarding the relationship between the 
fractional vegetation cover (FVC) and LST, 
for the years 1992, 2002, 2012, and 2022, R2 
is equal to 0.87097, 0.84598, 0.83957, and 
0.71838, respectively. Conversely, for the 
LST and the normalised difference built-up 
index (NDBI), the R2 values were 0.5975, 
0.73876, 0.86615, and 0.90368 for 1992, 
2002, 2012, and 2022 respectively. In 
conclusion, this study evaluates Benin City's 
metropolitan setting and thermal 
environment. According to the LULC study, 
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there are more built-up areas and less 
vegetation. The impact of the changing land 
cover on urban thermal features is shown 
through correlation analysis, which links 
more built-up regions to higher LSTs. These 
results can support urban design efforts to 
lessen the effects of climate change. 
Examining the distribution of the LST and 
its associations with particular land cover 
types was the major goal of this study. 
Future research will undoubtedly use this 
study as a useful reference when modelling 
urban terrain and temperature variations. 
 

Keywords: algorithm; concentric zone; 
emissivity; zonal statistics. 

 
INTRODUCTION 

 

Population growth has been 
concentrated in metropolitan regions due 
to urbanisation, which has turned these 
areas into hubs of growth and economic 
activity (Bottalico et al., 2016). The loss 
of important ecosystems, increasing 
greenhouse gas emissions, landscape 
fragmentation, biodiversity loss, urban 
heat islands, and vulnerability to climate 
change are all consequences of this fast 
urban growth (Norton et al., 2015). 
Urban planning has gained popularity, 
particularly in industrialised countries, 
with a focus on constructing compact, 
dense cities, sustainable transportation, 
and improving liveability for both 
current and future generations 
(Demuzere et al., 2014). Important 
ecosystems are also destroyed and 
fragmented as a result of urbanisation, 
which has an effect on urban 
biodiversity and changes how cities 
interact with the environment (Wu, 
2014). Cities are improving their 
infrastructure to solve these issues, with 
an emphasis on creating urban green and 
blue infrastructures to lessen the urban 

heat island effect (Connop et al., 2016). 
Natural vegetation, parks, private 
gardens, street trees, green roofs, and 
wetlands are just a few examples of 
urban green infrastructure, which is 
essential for delivering ecological, 
social, and economic advantages while 
reducing the negative effects of climate 
change (Pakzad and Osmond, 2016). 
The use of urban cool islands (UCIs) to 
minimise the urban heat island effect in 
Benin City has received very little 
investigation, despite prior studies 
exhaustively examining urban heat 
islands in Benin City (Agheyisi and 
Andrew, 2013; Efe and Eyefia, 2014; 
Dirisu et al., 2015; Igun, 2017). The 
collection of geographical information, 
such as archival satellite data, has been 
made possible by geospatial 
technologies; these data can provide 
insights into microclimatic phenomena 
like heat islands and prospective 
methods for enhancing human comfort 
(Blanusa et al., 2013; Skoulika et al., 
2014; Okhakhu, 2016). Nigeria's rapid, 
haphazard, and unregulated urbanisation 
makes it essential to precisely measure 
the emissivity of urban surfaces since 
cities can contain a variety of materials 
with an emissivity below 1 (Sobrino et 
al., 2012). 

In many studies of the impact of 
urban heat islands, emissivity 
classification across urban areas was 
used (Imhoff et al., 2010; Myint et al., 
2011). It has been acknowledged that 
urban green infrastructure, such as 
networks of public open spaces, urban 
tree canopies, wetlands, and green walls, 
has a favourable effect on the urban 
environment; it can supply services such 
as climate adaptation, urban resilience 
and sustainable development (Ashley et 
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al., 2011; Foster et al., 2011; Norton et 
al., 2015). To meet the social and 
psychological demands of people living 
in cities, green areas should be available 
and well-maintained (Haq, 2011). They 
help cities look better, use less energy to 
cool the air, and generally cool down 
urban areas (Sadeghian and Vardanyan, 
2013; Parker and Zingoni de Baro, 
2019). The building density, 
urbanisation, and changes in land use 
and land cover all have an impact on the 
thermal properties of urban areas, which 
in turn affect the microclimate 
(Alavipanah et al., 2015; Okhakhu, 
2016). The UCI effect is characterised 
by lower temperatures due to shade and 
other causes, whereas the urban heat 
island effect is principally produced by 
the significant heat created by urban 
structures, resulting in the absorption 
and re-radiation of solar energy 
(Hathway and Sharples, 2012; Nastaran, 
2014). Green spaces, sometimes referred 
to as UCIs or green-space cool islands 
(GCIs), have been acknowledged as a 
mitigating approach that can alleviate 
heat stress (Feyisa et al., 2014; Skoulika 
et al., 2014). 

Land surface temperatures can be 
determined using remote sensing 
methods that employ satellite data from 
programmes like Landsat and ASTER, 
which have also been used to track 
changes in the land use and land cover 
over time (Takeuchi et al., 2010). 
Because of the reduction in greenery, the 
expansion of paved surfaces, and human 
heat outputs, the temperature distribution 
in metropolitan centres is frequently 
warmer than in surrounding suburban 
areas (Elsayed, 2009; Akbari, 2011; 
Giannaros and Melas, 2012; Senanayake 

et al., 2013). Prior research has 
concentrated on comprehending the 
urban heat island effect and investigating 
methods that can lessen its adverse 
consequences (Choi et al., 2012; Gago et 
al., 2013). To identify urban heat islands 
(UHIs) in Benin City, the Urban 
Thermal Field Variance Index (UTFVI) 
was used. This index is widely used to 
describe the UHI effect with more 
precision (Tomlinson et al., 2011). The 
notable effects of a high UTFVI include 
but are not limited to adverse impacts on 
the local wind, humidity, and air quality, 
a reduction in comfort, an increased 
mortality rate, and indirect economic 
loss (Sejati et al., 2019). 

An effective machine learning 
approach for classifying the land use / 
land cover (LULC) in images is called 
the random forest (RF) method. To 
produce precise forecasts, RF combines 
the strengths of decision trees and 
ensemble learning. There are countless 
algorithms for classifying images, 
including support vector machines 
(SVMs) (Kamavisdar et al., 2013), 
maximum likelihood (ML) models 
(Otukei and Blaschke, 2010), deep 
learning (DL) models (Alzubaidi, 2021; 
Naushad et al., 2021), and fuzzy 
classification (FC) models (Badhe and 
Chang, 2016). Due to its superior 
effectiveness and accuracy, cheap 
computational cost, and small number of 
parameters, RF has emerged as one of 
the top methods for LULC mapping 
(Thanh Noi and Kappas, 2018; Naushad 
et al., 2021). The following research 
topics were addressed in this study: (a) 
What changes have occurred in the 
LULC of the study area? (b) How do the 
various land cover types in the study 



Aigbokhan et al. 
 

 

248 

area relate to the urban temperature 
variability? Examining the distribution 
of the land surface temperature (LST) 
and its associations with particular land 
cover types is the major goal of this 
study. This study began with the 
consideration of numerous linked 
research articles. However, the major 
gap that this study is meant to fill is the 
gap that exists because past studies have 
not given enough attention to the 
thermal interactions between the urban 
landscape and particular types of land 
cover, with a focus on microclimatic 
characteristics. 

 
MATERIALS AND METHODS 

 

Benin City is situated between 6° 
23' 55" and 6° 27' 39" N and 5° 36' 18" 
and 5° 44' 31" E in the Nigerian state of 
Edo (Aiyesanmi and Imoisi, 2011). It 
currently serves as Edo's capital and was 
formerly the regional capital of the old 
Midwest. Figure 1 shows the location of 
the city, which spans three major local 
government areas: Oredo, Egor, and 
Ikpoba-Okha (Okhakhu, 2010). Benin 
City is located in the Benin Formation, a 
geological deposit from the Miocene to 
Pleistocene eras (Odemerho, 1988). 
Low-lying, undulating terrain with 
gentle slopes toward the Ogba Stream in 
the western section and the Ikpoba River 
in the eastern section make up the 
topography (Eseigbe and Ojeifo, 2012). 
Reddish soil made of lateralised clay 
sand and huge lateritic clay and sand 
layers make up the region's geology 
(Akujieze, 2004). Tropical weather with 
distinct rainy and dry seasons is the 
norm in Benin City. 

The dry season normally lasts from 
December to March, whereas the rainy 

season typically lasts from mid-April to 
mid-November. The city has a mean 
monthly temperature of 28°C (82.40°F), 
with a typical annual rainfall of 2000–
2500 mm (Ezemonye and Emeribe, 
2014). Although urban development has 
considerably decreased the amount of 
vegetation, the majority of Benin City's 
vegetation consists of evergreen 
rainforest (Ezemonye and Emeribe, 
2014). The city is renowned for its 
numerous mediaeval moats, which 
surround different districts. Primary, 
secondary, and tertiary sectors all 
contribute to the socio-economic 
activities of Benin City's thriving 
economy. 

Brass casting, wood carving, 
blacksmithing, general buying and 
selling, and transportation are examples 
of the economic activity that takes place 
in the city (Ezemonye and Emeribe, 
2014; Onaiwu, 2021). The city is home 
to several markets, including Ikpoba Hill 
Market, Uselu Market, New Benin 
Market, and Oba Market. 

This study analysed the study 
region over 30 years using Landsat 
satellite images from the Thematic 
Mapper (TM), Enhanced Thematic 
Mapper (ETM), Enhanced Thematic 
Mapper Plus (ETM+), and Operational 
Land Imager (OLI) sensors, which were 
downloaded from the US Geological 
Survey's main website (USGS, 2022). 
Except for the thermal Infra-Red bands, 
the images from 1990, 2000, 2010, and 
2020 were collected with pixel sizes of 
30 m by 30 m. 
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Figure 1 – Map of the study area, which is located in the state of Edo in Nigeria 

 

The pixel sizes and specifications 
were obtained from Chander and 
Markham (2003). The US Geological 
Survey's official website was used to 
retrieve the Shuttle Radar Topographic 
Mission (SRTM) data, which were also 
used in the study. All satellite images 
were captured during the dry season to 
ensure uniformity and minimise the 
cloud cover. The dry season was chosen 
due to the generally decreased cloud 
cover during this time. Additionally, the 
seasonality had no substantial impact on 
the study's goals. Using the WGS-84 
data, the Landsat images were 
georeferenced to the UTM zone 31 
North projection. The dates, path/row, 
and specifications for the OLI, ETM+, 
and Landsat TM images are listed in 
Table 1. Although not all bands were 
directly relevant to this inquiry, Tables 2 
and 3 list the bands, their bandwidths, 

and their resolutions. In addition to the 
Landsat images, a high-resolution geo-
referenced dataset from Google Earth 
Imagery (GEI) was also employed, 
particularly in urban areas where land 
cover patterns are made up of a complex 

mosaic of various land uses. The study 
concentrated on examining how the 
environment changed and how the UCI 
phenomenon manifested during 1992, 
2002, 2012, and 2022. This study used 
ArcGIS 10.4.1, QGIS 3.12, Idrisi Selva 
17, R/RStudio 3.5.2, and a portable GPS, 
among other software programs and 
tools. Several activities, including 
making shapefiles, enhancing maps, and 
managing vector-related components, 
were completed using ArcGIS 10.4.1. 
For accuracy evaluation and image pre-
processing, QGIS 3.12 was used. For the 
study's geostatistical analysis, Idrisi 
Selva 17.0 was utilised. 
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Table 1 – Satellite images and their acquisition dates 

Satellite 
sensor 

Spatial 
resolution 

Acquisition 
years 

Time of 
day 

Path Row Source 

TM 30 m × 30 m 14-01-1992 02:43:16 189 56 

USGS (2022) 
ETM 30 m × 30 m 07-02-2002 10:36:22 189 56 
ETM+ 30 m × 30 m 03-02-2012 04:22:46 189 56 
OLI_TIRS 30 m × 30 m 07-03-2022 09:51:06 189 56 
Google 
Earth 
Imagery 

2.5 m × 2.5 m 
1992, 2002, 
2012, and 

2022 
- - - Google Earth Pro 

SRTM 
image 

30 m × 30 m - - - - USGS (2022) 

 
We conducted a further statistical 

analysis using R/RStudio 3.5.2. The 
ground control points (GCPs) were 
gathered using a portable GPS device. 
The precise spatial referencing of the 
satellite images was made possible by 
these GCPs, which are essential to the 
georeferencing process. Overall, various 
software systems and tools were chosen 
based on their value and how well they 
fit this particular project's needs. 

 

Image Pre-processing 
To eliminate atmospheric effects 

and obtain precise surface reflectance 
values, it is essential to atmospherically 
correct satellite photos. The dark object 
subtraction (DOS) technique is a 
frequently applied atmospheric 
correction algorithm. The DOS 
algorithm assumes that there are certain 
dark objects in an image that, in the 
absence of air scattering and absorption, 
should have a reflectance value near 
zero. A portion of this algorithm was 
utilised for image processing. In each of 
the k bands of imaging, the image 
elements (pixels) that make up a digital 
remotely sensed image are typically 
located at the intersection of each row i 
and each column j. The images used in 
this study were first converted to top-of-

atmosphere (TOA) radiance data using 
Equation 1 (Giannini et al., 2015): 

 A = ቆሺL୑୅ଡ଼ૃ − L୑୍୒ૃሻQେ୅୐λ ቇQେ୅୐ + L୑୍୒ૃ (1)

 

where: ߣܮ = the spectral radiance at the 
sensor's aperture [W/(m2 sr µm)], 

QCAL = the quantised calibrated pixel 
value [DN], 

QCALMIN = the minimum quantised 
calibrated pixel value corresponding to 
LMINߣ [DN], 

QCALMAX = the maximum quantised 
calibrated pixel value corresponding to 
LMAXࣅ) [DN], 

LMIN	ߣ = the spectral at-sensor radiance 
that is scaled to QCALMIN [W/(m2 sr 
µm)], and 

LMAX	ߣ = the spectral at-sensor 
radiance that is scaled to QCALMAX 
[W/(m2 sr µm)]. 

The above expression does not 
consider the atmospheric effects, and 
therefore there is a need to convert the 
images from radiance to reflectance 
measures using Equation 2 (Giannini et 
al., 2015): 

 ρλ = (π ∗ TOAr.∗ dଶ)Eୗ୙୒λ. Cosθୱ୸  (2)
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where: ߣߩ =	the planetary TOA reflectance 
(unitless), 
π = the mathematical constant 

approximately equal to 3.14159 
(unitless), ߣܮ =	the spectral radiance at the 
sensor's aperture [W/(m2 sr µm)], ݀ଶ = the Earth-sun distance 
[astronomical units], ܧௌ௎ே = the mean exoatmospheric solar 
irradiance [W/(m2 sr µm)], and 
θSZ = the solar zenith angle [degrees]. 

The cosine of this angle is equal to the 
sine of the sun elevation θSE. That is, θSZ 
= cos (90 – θSE). 

 

Image Classification 
In remote sensing, image 

classification is a key procedure that 
involves separating different groups or 
themes, such as different types of 
LULC, from unprocessed digital satellite 
data. It allows the recognition and 
classification of many properties that can 
be observed in satellite images, such as 
the urban land cover, plant types, 
structures, and mineral resources, as well 
as changes in these aspects (Lillesand 
and Kiefer, 2008). Because of their high-
quality data, Landsat images were 
utilised in the classification method in 
this study (Tables 2 - 4). Landsat satellite 

images have been extensively used in a 
variety of remote sensing applications 
and offer useful information for 
analysing the land cover. 

Image classification is a difficult 
and time-consuming procedure that calls 
for a thorough assessment of the best 
classification methodology to obtain a 
high accuracy. The supervised 
classification approach was used in this 
investigation. This technique, which is 

popular in image classification, 
automatically classifies pixels with 
comparable spectral values into certain 
land cover classes or themes. Landsat 
data were used to map the LULC in 
1992, 2002, 2012, and 2022 (Table 1). A 
modified version of the LULC 
classification scheme of Mikias et al. 
(2017) was used to classify the images 
(Table 5). The ensemble learning 
approach is used by the RF classifier as 
a machine learning methodology. 
Breiman (2001) initially presented this 
technique (Rimal et al., 2017). The 
number of iterations for each attribute is 
counted when the classification is 
complete using the RF method. It is 
important to note that as the number of 
trees grows, the overall classification 
accuracy grows as well (Rimal et al., 
2017) until convergence starts to occur 
without overfitting. Sub-pixel studies on 
the surface temperature rely heavily on 
vegetation indices such as the 
normalised difference vegetation index 
(NDVI), fractional vegetation cover 
(FVC), and normalised difference built-
up index (NDBI), which were derived 
using mathematical methods. 

 

Normalised Difference 
Vegetation Index  

Using digitised Landsat data, Rouse 
et al. (1974) developed the NDVI as a 
spectral vegetation index (VI) to separate 

green vegetation from the brightness of 
its backdrop soil. The difference between 

the reflectance values of the near-
infrared (NIR) and red bands and their 
total reflectance is used to determine the 
NDVI. Because it successfully 
minimises topographic impacts and 
offers a linear scale for measurement, 
this index is extensively utilized. 
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Table 2 – Band properties of Landsat 5 TM 

Band Name Bandwidth (μm) Resolution (m) 

1 Blue 0.45–0.52 30 
2 Green 0.52–0.60 30 
3 Red 0.63–0.69 30 
4 NIR 0.76–0.90 30 
5 MIR 1.55–1.75 30 
6 TIR-1 10.40–12.50 120 
7 TIR-2 2.08–2.35 30 

Source: Chander and Markham (2003) 
 

Table 3 – Band properties of Landsat 7 ETM+ (2010) 

Band Name Bandwidth (μm) Resolution (m) 

1 Blue 0.45–0.52 30 
2 Green 0.52–0.60 30 
3 Red 0.63–0.69 30 
4 NIR 0.85–0.88 30 
5 SWIR-1 1.57–1.65 30 
7 SWIR-2 2.09–2.35 30 
6 Thermal 10.40–12.50 60 
8 Panchromatic 0.52–0.90 15 

Source: Ihlen (2019a) 
Table 4 – Band properties of Landsat 8 OLI/TIRS 

Band Name Bandwidth (μm) Resolution (m) 

1 Coastal 0.43–0.45 30 
2 Blue 0.45–0.51 30 
3 Green 0.53–0.59 30 
4 Red 0.64–0.67 30 
5 NIR 0.85–0.88 30 
6 SWIR-1 1.57–1.65 30 
7 SWIR-2 2.11–2.29 30 
8 Panchromatic 0.5–0.68 15 
9 Cirrus 0.36–0.38 30 

10 TIRS 1 10.6–11.19 100 
11 TIRS 2 11.5–21.51 100 

Source: Ihlen (2019b) 
 

Higher NDVI values correspond to 
healthier and denser vegetation; the 
NDVI a typical range of -1 to 1. 
Generally speaking, NDVI values above 
0.2 are frequently linked to vegetation, 
and values below 0.2 are typically 
connected with non-vegetated 
environments like rock, soil, or man-

made materials. An NDVI map can be 
produced using Equation 3: 
ܫܸܦܰ  = ܴܫܰߩ − ܴܫܰߩܴ݀݁ߩ + (3) ܴ݀݁ߩ

 

where: ܴܫܰߩ = the near-infrared 
reflectance and ܴ݀݁ߩ =	the red 
reflectance. 
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Table 5 – A land use / land cover classification scheme 

Built-up area 
An urban region with impermeable pavement (roads, pavement, and other 
highways) and structures 

Vegetated 
area 

Green space (land that is partially or entirely covered by grass, trees, shrubs, 
or other vegetation). Green space consists of public parks, neighbourhood 
gardens, plantation and natural forests, greenways, green spaces, institutional 
grounds, cemeteries, and religious grounds. 

Bare land 

Remnant parcels, which are often tiny in size and frequently spherical in form 
and have not been developed in the past; parcels with physical restrictions, 
such as a high slope or flood danger, which are thus unusable; or reserve 
parcels maintained for future relocation and enlargement 

Source: Mikias et al. (2017) 
 

Fractional Vegetation Cover  
The FVC is the projected 

percentage of the overall study area that 
is vegetated (with roots, stems, and 
leaves) (Gitelson et al., 2002). The size 
of the photosynthetic area, the density of 
the vegetation, and the development 
trend of the vegetation are all partially 
captured by the FVC, according to Gao 
et al. (2017). Yan et al. (2017) claim that 
the FVC is often used as a crucial 
criterion for the balance and expansion 
of terrestrial ecosystems in research on 
climate change, soil, and hydrology. 
Equation 4 will be used to compute the 
FVC: 

ܥܸܨ  = ܫܸܦܰ) − ௠௔௫ܫܸܦܰ)(௠௔௫ܫܸܦܰ − ௠௜௡) (4)ܫܸܦܰ

 

where: ܰܫܸܦ௠௔௫ = the NDVI maximum 
and ܰܫܸܦ௠௜௡ = the NDVI minimum. 
 
Normalised Difference 
Built-up Index 

The disparity in the range of 
reflection and absorption values in 
populated and uninhabited land sections 
was utilised to select the wavelengths of 
the Landsat images that were used. 
Bands 5, 6, and 7 of the Landsat 8 OLI, 
which correspond to Near Infra-Red 
(NIR), Mid Infra-Red (MIR), and 
Shortwave Infra-Red (SWIR) 

wavelengths, provide a high contrast 
level for identifying populated and 
uninhabited terrain areas. In bands 5, 6, 
and 7, there is also an inverse reflection 
ratio that can be used to distinguish 
built-up areas from other types of land 
cover (As-syakur et al., 2012). In band 
4, vegetation reflects light well, whereas 
built-up areas reflect light poorly. In 
contrast, urban environments are easier 
to identify in band 5 than vegetated ones 
(Bouhennache et al., 2015). The built-up 
land cover picture can be produced using 
Equation 5, which is from the 
introduction to the NDBI provided by 
Zhao and Chen (2005). The formula for 
calculating the NDBI using Landsat 5 
uses band 3 and band 4 (Equation 5 and 
Equation 6) (Chander and Markham, 
2003): 

ܫܤܦܰ  = ܴܫܰߩ − ܴ݀݁ߩܴ݀݁ߩ + (5) ܴܫܰߩ

 

where: ܴ݀݁ߩ	= the red reflectance (band 
3) and ܴܫܰߩ = the near infrared 
reflectance (band 4): 

ܫܤܦܰ  = ܴܫܯߩ − ܴܫܯߩܴܫܰߩ + (6) ܴܫܰߩ

 

where: ܴܫܯߩ = the mid-infrared 
reflectance and ܴܫܰߩ =	the near-
infrared reflectance. 
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The index was created based on the 
unique spectral response of built-up 
areas, which exhibit more reflectance in 
the MIR wavelength range than in the 
NIR wavelength range. 

 

The Operation of the Maximum 
Likelihood Classifier 

The maximum likelihood (ML) 
method is one of the most used 
supervised classification methods for 
remote sensing data. The possibility that 
a pixel belongs to a certain class serves 
as the basis of this approach. The basic 
theory assumes that (i) these 
probabilities are equal for all classes and 
that (ii) the input bands have normal 
distributions. Using a normal 
distribution assumption for each input 
band, the ML classification approach for 
remote sensing tends to overclassify 
signatures with large values in the 
covariance matrix. It makes use of the 
spectral distance method, which 
measures the separation between a 
candidate pixel's measurement vector 
and the mean vector for each class 
signature. Although ML classification is 
computationally efficient, it may 
misclassify pixels since it does not take 
class diversity into account. The 
posterior distribution P(i|) that reflects 
the likelihood of a pixel belonging to a 
certain class is determined by the Bayes 
theorem, which forms the basis of this 
method (Asmala and Shaun, 2012) 
(Equation 7): 

 P(iIω) = P(iΙω)P(ω)P(ω)  (7)

 

where: 
P(ω|i) = the likelihood function,  

P(i) = the a priori information, i.e. 
the probability that class i occurs in the 
study area, and  

P(ω) = the probability that ω is 
observed, which can be written as 
Equation 8: 

 P(ω) =෍P(௠
௜ୀଵ ω	I	i)	P(i) (8)

 

where:  
M = the number of classes.  
P(ω) is often treated as a normalisation 

constant to ensure that ෌ P(௠௜ୀଵ i	I	ω)	sums to 1 (Asmala and 
Shaun, 2012). 

Each class in the ML classification 
has an area in multispectral space where 
its discriminant function is bigger than 
those of all other classes. Decision 
borders split these class areas, and the 
decision boundary between classes i and 
j occurs where Equation 9: 

 ௜݃(߱) = ݃௝(߱) (9)
 

Accuracy Assessment 
Accuracy evaluation is an 

important part of mapping remote 
sensing data since it reveals potential 
classification errors that can arise. 
Common mistakes in image 
classification include errors of omission 
and commission. The confusion matrix, 
commonly referred to as the error 
matrix, is a popular technique for 
evaluating the classification accuracy. At 
each sample unit, a comparison is made 
between the reference data and the 
classified map, with the reference data 
being represented by columns and the 
classified map being represented by 
rows. The matrix makes it easier to see 
errors of commission and omission. In 
this study, 400 GCPs were randomly 
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chosen for each year, and the accuracy 
of all classifications was assessed using 
the Kappa coefficient. The Kappa 
coefficient and the error matrix can be 
used to assess the correctness of the 
thematic maps produced by 
classification techniques (Equation 10) 
(Olofssona et al., 2013): 

஺௉௉஺ܭ  = ܰΣ௞ ௜ܺ௜Σ௞( ௜ܺା × ܺା௜)ܰଶ − Σ௞( ௜ܺା × ܺା௜)  (10)

 

where: 
KAPPA = the Kappa index,  
k = the number of matrix files,  
Xii = the observation number in row i 

and column i (along the diagonal), ( ௜ܺା	and	ܺା௜) = the total marginal for 
row i and column i, respectively, and 

N = the total number of observations. 
Four hundred sample points are 

used in the accuracy assessment. The 
number of sample points was calculated 
using the 'Taro Yamane formula' (Adam, 
2020). The ERDAS Imagine 2014 
accuracy evaluation technique was used 
to obtain the accuracy rating. The 
producer's accuracy (Pa), user's accuracy 
(Ua), Kappa statistics (K), and overall 
accuracy (A) were determined from the 
classified images for the years 1992, 
2002, 2012, and 2022 (Equation 11): 

 n = N1 + N(e)ଶ (11)

 

where: 
n = the sample size, 
N = the finite population (i.e. the size 

of the area = 75266 ha), and 
e = the level of significance (0.05). 

To distribute the 400 points for the 
accuracy assessment, this study used a 
stratified random sample technique; this 
design was chosen since it is useful for 

analysing change maps (Olofssona et al., 
2013). The stratified reference sample 
points were created in the ERDAS 
Imagine environment and placed on the 
reference image for the accuracy 
evaluation. The tool automatically 
generates the error matrix, accuracy 
totals, and Kappa statistics to assess the 
accuracy. 

 

Temperature Retrieval from Satellite 
Thermal Bands for the Study Period 

The retrieval of the LST was 
carried out using the following four 
phases. 

 

Conversion from 
Digital Number to Radiance  

The conversion from a digital 
number to a radiance value was 
performed as follows (Equation 12): 

ఒܮ  	= ܯ	 	ܳ௖௔௟ 	+ ܣ	  (12)
 

where: ܮఒ	 = the TOAr (TOA radiance), 
i.e., the radiance measured by the sensor, 	ܯ  = the band-specific multiplicative 
value, ܣ  = the band-specific additive 
value and ܳ௖௔௟ = the quantised and 
calibrated value. 

 

Conversion from Radiance 
to Brightness Temperature 

The satellite temperature in Celsius 
was calculated using Equation 13 
(Agbor and Makinde, 2018): 

		ୀ		௧ܤ  ൦ ݊ܫଶܭ ቀܭଵܣ௥ + 1ቁ൪ − 273.15 (13)

 

where: 
Bt = the temperature in degrees 

Celsius, ܣ௥ = the TOA spectral radiance (ܹܽ(݉ߤ∗݀ܽݎݏ∗2݉)/ݏݐݐ)  
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K1 and K2 = the thermal conversion 
constants from the metadata. 

 

Estimation of Land Surface 
Emissivity 

For a precise LST estimate, the 
land surface emissivity (LSE) is 
required. The LSE is a proportionality 
factor that scales the black body 
radiance (Ugur and Gordana, 2016) to 
quantify the emitted radiance and the 
ability to transmit thermal energy from 
the surface into the atmosphere. It was 
calculated using Equation 14:  

 
௜ߝ  = 0.004 ௩ܲ + 0.986 (14)
 

 

where: ௩ܲis the vegetation proportion 
obtained from Equation 15: 
 ௩ܲ	 = (ே஽௏ூିே஽௏ூ௠௜௡)(ே஽௏ூ௠௔௫ି	ே஽௏ூ௠௜௡)ଶ			 (15) 

 

Land Surface 
Temperature Extraction 
The LST was derived from TM band 6 
and OLI band 10 using an emissivity-
corrected model (Equation 16): 

	=	ܶܵܮ  ୆೟ଵାቀƛ	౮౐ಙ ቁ୪୬	க (16)
 

where: ߣ	= the wavelength of the emitted 
radiance, 
ρ = h×c/(1.438 ×10-2 m K), 
σ = the Boltzmann constant (1.38 ×10-

23 J/K), 
h = Planck's constant (6.626×10-34 J s), 
c = the velocity of light (2.998 ×108 

m/s) and 
Ɛ = the emissivity (Lillesand and 

Kiefer, 2008) 
 

The Urban Thermal Field 
Variance Index  

The urban thermal field variance 
index (UTFVI), which was used in 
Equation 17 can be used to describe the 

UHI effect objectively. The UTFVI was 
computed in the ArcGIS environment 
using a raster calculator to quantitatively 
reflect the UHI effect: 

 UTFVI = ௦ܶ − ௠ܶ௠ܶ ,		 (17)
 

where: ࢙ࢀ = the LST and ࢓ࢀ = the mean 
LST of the area. 

The study area was further 
classified into six different regions based 
on UTFVI scores (Singh and Singh, 
2017). 

 

Multiple Correlation 
The pairwise correlations between 

variables are displayed in a multiple 
correlation matrix, which demonstrates 
how each variable in the dataset is 
related to the others. The matrix's values 
range from -1 to 1, with 1 denoting the 
highest possible positive correlation, -1 
denoting the highest possible negative 
correlation, and 0 denoting the absence 
of any correlation. In general, the 
correlation matrix improves our 
understanding of the tendencies of the 
associations between various variables. 
It reveals which variables have a 
propensity to move in tandem (positive 
correlation), move in opposition to one 
another (negative correlation), or show 
no link at all (correlation close to zero) 
(Equation 18): 

 ܴ = ඨݎ௬௫భଶ + ௬௫మଶݎ − ௬௫భݎ2 . ௫భ௫మ1ݎ௬௫మݎ − ௫భ௫మଶݎ  (18)

 

where: ݎ௬௫భ= the correlation coefficient for y 
and x1, ݎ௬௫మ= the correlation coefficient for y 
and x2, and ݎ௫భ௫మ= the correlation coefficient for x1 
and x2. 



Dynamics of urban landscape and its thermal interactions with selected land cover types 
 

 
257 

 
 

Land Surface Temperature 
Validation Methods 

Using a variety of methodologies, 
uncertainties in the satellite-derived LST 
data can be examined and validated 
(Schneider et al., 2012; Guillevic et al., 
2014). In this work, a traditional 
methodology was used; it involves 
directly comparing sensor temperatures 
measured on the ground with the LST 
data obtained from satellites (Schneider 
et al., 2012). The Benin Airport 
(NiMET) and the University of Benin 
are the locations of two meteorological 
stations within the research region that 
were utilised to validate the satellite-
derived LST data. These areas were 
chosen because they had working 
weather stations. The validation Landsat 
thermal picture was obtained on 7 March 
2022, and the temperature data from 
these two ground stations were 
compared to the actual temperatures 
observed that day. This comparison was 
performed to see how well the 
temperatures obtained from satellite data 
and the temperatures reported at weather 
stations on the ground stations agreed. 

 
RESULTS AND DISCUSSION 

 

The analyses presented in this 
section were carried out based on the 
objectives of this study. The dynamics of 
the LULC, the accuracy of the image 
classification process, the spatiotemporal 
distribution of the LST, and the 
quantitative relationships between the 
LST and surface biophysical parameters 
represent some of the subjects covered. 
Many different presentation formats are 
utilised to display the findings of the 

various investigations, including maps, 
statistics tables, charts, and graphs. 

 

Land Use / Land Cover Distribution 
The built-up area in the study 

region rose from 19.66% of the total 
area in 1990 to 23.40% in 2000, 
according to the results given in Table 6. 
It then increased further, reaching 
44.38% in 2012 and 61.79% in 2022. 
This increase can be linked to continued 
urban development and rehabilitation, 
which have been important components 
of policy objectives for successive 
administrations since the state of Edo 
was founded in 1991. On the other hand, 
the percentage of the total area covered 
by vegetation dropped from 71.08% in 
1992 to 33.42% in 2012 and then to 
15.92% in 2022. Between 1992 and 
2022, the percentage of barren land 
increased steadily, from 9.25% to 
22.29%. Table 7 offers more information 
on the variations in the land cover over 
time. The built-up land cover increased 
to 20.98% of the total area in 2012 
before falling to 17.41% in 2022, which 
represents a change of around 3.74% 
between 1992 and 2002. Between 1992 
and 2002, there was a 6.92% difference 
in the vegetation cover, with a larger 
difference between 2002 and 2012 of 
30.74%. The year 2022 saw a reduction 
in the vegetation cover by 17.5%. The 
spatial distribution of the LULC classes 
shown in Figure 2 is consistent with the 
statistical information given in Table 6 
and Table 7, further supporting the 
conclusions drawn from these data. 
Mission Road, Ring Road/Mission 
Road, Ikpoba Hill Market, Fabolude, 
Aighewi, Airport Road, the University 
of Benin sector, and significant 
crossroads are only a few of the 
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commercial centres that have an impact 
on the urbanisation of Benin City. 
Because property is frequently bought to 
build dormitories to house students at 
high rental costs, the University of Benin 
has contributed to the growth in land 
values along Ugbowo/New Lagos Road. 
These results are consistent with earlier 
research by Odjugo et al. (2015) and 
Olayiwola and Igbavboa (2014), which 
suggests that migration from rural to 
urban areas and rapid population 
increase are the main drivers of 
urbanisation in Benin City. This 
tendency is further fuelled by the rising 
demand for housing, jobs, education, 
healthcare, and other services. 
Additionally, according to Puplampu 
and Boafo (2021), the city's growth has 
led to a reduction in green spaces. 

Population growth may have 
played a role in the dynamics of the 
city's LULC, as shown by the increase in 
Benin City's population from 689,152 in 
1992 to 1,727,169 in 2022. The built-up 
area steadily rose from 3.74% in 2000 to 
17.41% in 2022 as a result of the 
concentration of economic activity in the 
city centre. Human activity has severely 
harmed places such as Ring Road, 
Mission Road, Akpakpava, Ikpoba Hill 
Market, Airport Road, and the 
neighbourhood of the University of 
Benin. These findings agree with those 
of Olayiwola and Igbavboa (2014). 
Given the rise of peri-urban 
neighbourhoods, population growth may 
play a part in the dynamics of the city's 
LULC. The changes in land use and 
cover are a reflection of the 
modifications to the urban environment 
brought on by the state of Edo's 
separation from the former state of 
Bendel in 1991, which increased the 

demand for land for housing and public 
facilities. 

 

Accuracy Assessment 
of the Classified Images 

For the accuracy assessment, a total 
of 400 sample points were produced 
using Equation 12. The technique 
contrasts thematic-data-layer pixels with 
reference pixels that have well-
established class designations. Table 8 
provides a summary of the report that 
the algorithm generated. Built-up (Pa = 
93.8%, Ua = 92.9%), bare land (Pa = 
91.3%, Ua = 76.3%), and vegetation (Pa 
= 96.0%, Ua = 98.8%) all had excellent 
producer accuracy (Pa) and user 
accuracy (Ua) values for the 1992 LULC 
classification. In 2022, bare land had a 
Pa of 96.3% and a Ua of 78.1%, while 
built-up areas had a Pa of 87.7% and a 
Ua of 97.8%. Meanwhile, vegetation had 
a Pa of 83.7 % and a Ua of 77.9%. These 
levels of accuracy are thought to be 
adequate. The high overall accuracy of 
the LULC classification in this study for 
the years 1992 (95.0%), 2002 (92.2%), 
2012 (89.0%), and 2022 (89%) is 
evidence of the LULC classification's 
reliability. 

 

Spatio-temporal Distribution of Land 
Surface Temperature  

The temperature gradient was used 
to examine and categorise the 
temperature distribution in the study 
area. The maps of the distribution of the 
LST for 1992 and 2002 are shown in 
Figure 3. Cool islands, or regions with 
LSTs below 22°C, were typically found 
close to the boundaries of metropolitan 
areas and along riparian vegetation. The 
highest LST values of 26°C and higher 
were found in Benin City's most 
urbanised regions, which are 
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distinguished by congested residential 
areas, high levels of commercial activity, 
and impervious landscapes. 

Due to increased commercial 
activity and fast urbanisation in 2002, 
there was a larger dispersion of places 
with LSTs exceeding 32°C, centred 
along more distinct borders. There was a 
further increase in areas with high LSTs 
from 2012 to 2022, with high 
temperatures (>30°C) moving toward 
the north-east axis of the urban area. In 
2020, there was a considerable increase 
in areas with extremely high LSTs 
(>32°C), as well as a major decrease in 
regions with lower LSTs (26°C). The 
practical outcomes of the government's 
urban reconstruction projects included a 

rise in impermeable surfaces, probable 
floods from exacerbated runoff, and the 
establishment of UHIs. 
 
Mean Land Surface Temperature 
of the Land Cover Types 

Statistics on the normalised LST 
for various LULC categories are shown 
in Table 9. Between 1992 and 2022, the 
mean LST values for several categories 
changed dramatically. In 1992, the mean 
LST for vegetation was the lowest at 
22.90°C, while the mean temperatures in 
populated regions were 26.69°C and 
24.65°C, respectively. 

The mean LST values for the 
different LULC types had risen by the 
year 2000. 

 

Table 6 – Land use / land cover distribution (1992, 2002, 2012, and 2022) 

Land use / 
land cover 
category 

1992 2002 2012 2022 
Area 
(ha) 

Area 
(%) 

Area 
(ha) 

Area 
(%) 

Area 
(ha) 

Area 
(%) 

Area 
(ha) 

Area 
(%) 

Built-up 14798.97 19.66 17615.70 23.40 33399.27 44.38 46504.08 61.79 

Bare land 6964.38 9.25 9358.29 12.43 16710.21 22.20 16778.16 22.29 

Vegetation 53502.48 71.08 48291.84 64.16 25156.35 33.42 11983.59 15.92 

Total 75265.83 100 75265.83 100 75265.83 100 75265.83 100 
 

Table 7 – LULC changes for Benin City and its environs 

LULC 
category 

1992–2002 2002–2012 2012–2022 

Area (ࢤ	ࢇࢎ) (ࢤ%) Area (ࢤ	ࢇࢎ) (ࢤ%) Area (ࢤ	ࢇࢎ) (ࢤ%) 

Built-up 2816.73 3.74 15783.57 20.98 13104.81 17.41 

Bare land 2393.91 3.18 7351.92 9.77 67.95 0.09 

Vegetation -5210.64 -6.92 -23135.49 -30.74 -13172.76 -17.5 
 

Table 8 – Summarised statistics of the accuracy assessment 

Class name 
 ࢇࢁ,ࢇࡼ 1992

 ࢇࢁ,ࢇࡼ 2002
 ࢇࢁ,ࢇࡼ 2012

 ࢇࢁ,ࢇࡼ 2022

Built-up 93.8, 92.9 87.7, 97.8 87.3, 94.1 87.7, 97.8 

Bare land 91.3, 76.3 95.1, 72.8 97.2, 78.8 96.3, 78.1 

Vegetation 96.0, 98.8 83.7, 77.9 85.6, 91.0 83.7, 77.9 

Overall accuracy 95.0 92.2 89.0 89.0 

Kappa statistics (࢑) 80.6 83.1 85.3 89.5 

*Pa = Producer accuracy; *Ua = User accuracy 
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Figure 2 – Land use / land cover maps of Benin City in 

(a) 1992, (b) 2002, (c) 2012, and (d) 2022 
 

 
Figure 3 – Spatial distribution of the normalised LST in 

(a) 1992, (b) 2002, (c) 2012, and (d) 2022 
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Examples include a rise in the 
mean LST of vegetation from 22.90°C in 
1992 to 23.54°C in 2002 and an increase 
in the mean LST of built-up areas from 
26.69°C to 27.74°C. The fact that the 
mean LST for vegetation was higher in 
2022 than it was for bare land (25.77°C 
vs 24.65°C) suggests that vegetation is 
changing into other land cover 
categories. Built-up regions experienced 
a rise in temperature of 3.97°C, bare 
land experienced an increase of 3.54°C, 
and vegetation experienced an increase 
of 2.87°C over the 30-year research 
period, according to the mean LST 
difference between 1992 and 2022 for 
various LULC categories. 

In built-up regions, the LST 
standard deviation in 2022 was 1.18°C, 
suggesting large temperature changes in 
these areas that may be caused by 
radiation from various materials and 
impermeable surfaces. With a standard 
deviation of 1.09°C, the vegetation 
showed homogeneity in its surface 
temperature. The urban canopy heat 
island phenomenon in Benin City was 
examined by Aruya et al. (2020), who 
found similar results that corroborate the 
mean LST trends observed for various 
land cover types. According to the study, 
variations in the mean LST may be 
caused by more human activity, greater 
emissivity from traffic and vehicle 
activity, and the surface cover 
morphology. 

 

The Urban Thermal Field Variance 
Index Within Benin City 

The UTFVI and Equation 12 were 
used in the study to objectively detect 
UHIs. For better visualisation, UHI 
maps were produced, and the land area 
was classified into the UHI categories 

none, weak, middle, strong, stronger, 
and strongest. Table 10 summarises the 
area extents of the six categories and 
their percentages of the total area. The 
'none' category was 26% of the total 
study area in 1992, and the 'strongest' 
UHI category was 4%. In 2012, the area 
extent of the 'weak' UHI category was 
37%. Conversely, only 6% of the study 
area was part of the 'strongest' UHI 
category. 

Another notable feature of the UHI 
maps shown in Figure 4 is the 
directional dispersion of UHIs. The 
distribution of UHIs has evolved over 
time, with central business districts 
(CBDs) serving as the main hub for 
UHIs. The UHIs spread out over the city 
as they expanded, affecting places like 
Uwelu, Upper Siloko, and the Erediawa 
Road axis, which did not experience 
UHI effects in 1992. 

The results of this study are 
supported by research by Efe and Eyefia 
(2014) on urban warming in Benin City. 
They concluded that Benin City indeed 
experiences a UHI effect, with an 
average yearly temperature rise of 4.4°C, 
which affects both the comfort of urban 
residents and the bioclimatic features of 
the urban environment. 

In line with the findings of this 
study, which found that UHI effects 
were more noticeable in the city's high-
density districts, their study also 
emphasised the large temperature 
variance within Benin City's urban 
environment. 
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Table 9 – Statistical values of the LST according to the LULC type 

 1992  2002  2012  2022  
Mean 

LST(°C) 

LULC type 
Mean 
(°C) 

 

SD 
(±) 

Mean 
(°C) 

SD 
(±) 

Mean 
(°C) 

SD 
(±) 

Mean 
(°C) 

SD 
(±) 

1990–2020 

Built-up 26.69 0.96 27.74 0.79 29.29 0.85 30.66 1.18 3.97 

Bare land 24.65 0.68 25.82 0.56 27.47 0.77 28.19 1.06 3.54 

Vegetation 22.90 0.70 23.54 0.67 25.57 0.98 5.77 1.09 2.87 

 
Table 10 – Extracted statistics based on the urban thermal field variance index 

Class 
1992 2002 2012 2022 

Area (ha) % Area (ha) % Area (ha) % Area (ha) % 

None 20826.81 26 7787.7 10 13077.63 17 5441.58 8 

Weak 31988.34 41 27859.86 37 27678.96 37 9122.49 12 

Middle 10215.63 13 16338.33 22 13254.39 18 12235.5 16 

Strong 6046.38 8 9053.82 12 8189.37 11 19784.43 26 

Stronger 6537.33 8 11554.38 15 8179.2 11 20227.95 27 

Strongest 3228.39 4 2671.74 4 4886.28 6 8453.88 11 

 

 
Figure 4 – Urban thermal field variance index map of Benin City in 

(a) 1992, (b) 2002, (c) 2012, and (d) 2022 
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Land Surface Temperature 
Validation Using Ground Data 

For validation purposes, Table 10 
displays the ground data and the derived 
LST data. Temperature readings from 
numerous locations throughout the 
research area are included in the ground 
data. These observations were made 
concurrently with or shortly after the 
collection of satellite LST data. To allow 
a direct comparison with the appropriate 
pixels or areas in the LST data acquired 
from satellites, the ground measurement 
locations were correctly recognised and 
located. To enable the precise 
synchronisation of ground and satellite 
observations, geolocation accuracy is 
essential. For instance, the LST retrieved 
from the satellite image from 4 January 
1992 is 31.33°C; there is a difference of 
0.13°C between this temperature and the 
LST from the ground data provided by 
the Nigerian Meteorological Agency 
(NIMET) on the same date, which is 
31.46°C. Similar to this, the derived LST 
from the satellite data from 7 March 
2022 was 34.21°C, whereas the ground 
data LST recorded by the Met. Station 
was 34.73°C, resulting in a difference of 
0.52°C. It is clear from a straightforward 
comparison that there was little difference 

between the two temperatures. 
 

Quantitative Relationships Among 
Surface Biophysical Indices and the 
Land Surface Temperature 

The LULC of the study area was 
represented by a set of biophysical 
indicators. These biophysical indices are 
shown in Figures 5–7. Regression 
analysis was used to examine the 
connection between land cover types and 
the LST. In this study, the LST was 
regressed with the FVC for vegetation 

cover and the NDBI for bare land / built-
up areas. The surface biophysical indices 
(the NDVI, FVC, and NDBI) from 1992 
to 2022 are displayed in Figures 5–7. 
The NDBI values grew with time, 
showing the growth of built-up regions 
as a result of urban development. On the 
other hand, when impermeable surfaces 
and materials took the place of green 
spaces, the FVC values declined. 

 

Analysing Relationships Between the 
Land Surface Temperature and Land 
Use / Land Cover 

Multiple correlation was employed 
to examine the connections between the 
LST and the land cover indices. It 
focuses on assessing the overall 
relationship and the strength of 
association between a dependent 
variable and a set of independent 
variables. Multiple correlation is 
essential for comprehending the overall 
predictive ability of a group of 
predictors for an outcome variable and 
acts as a key part of multiple regression 
analysis. 

Figure 8 shows the correlation 
matrices for the years 1992, 2002, 2012, 
and 2022. The correlation coefficients 
(R) between the LST and FVC in 1992, 
2002, 2012, and 2022 are -0.930, -0.913, 
-0.907, and -0.805, respectively. These 
high negative correlation coefficients 
suggest that as the LSTs of the years 
under consideration increase, the FVC 
tends to decrease. Conversely, the R 
values for the LST and NDBI for 1992, 
2002, 2012, and 2022 are 0.953, 0.929, 
0.862, and 0.750, respectively. These 
values indicate a very strong positive 
correlation between the LST and NDBI 
in Benin City. This means that an 
increase in the LST automatically 
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triggers an increase in the NDBI and 
vice versa. 

The correlation coefficient for the 
FVC and NDBI in 1992 is -0.95466, 
which indicates a strong negative 
correlation. This suggests that as the 
FVC increases, the NDBI tends to 
decrease. The correlation between the 

FVC and NDBI tends to be highly 
negative. These correlations have 
broadened our understanding of the 
interactions and dependencies between 
the variables in the dataset. These results 
are consistent with those of related 
studies (Monday et al., 2018; Tanutdech 
and Teerawong, 2020). 

 

Table 11 – Ground-pixel-based temperatures 

Station Data 
Ground/pixel point In-situ 

temperature 
LST Difference 

X Y 

NIMET 
(Benin 
Airport) 

4 January 1992 
7 February 

2002 
3 February 

2012 
7 March 2022 

124471.30 700178.89 

31.46°C 
 

32.10°C 
 

32.51°C 
33.64°C 

31.33°C 
 

32.21°C 
 

32.53°C 
33.85°C 

0.13°C 
 

-0.11°C 
 

-0.02°C 
0.21°C 

Met. 
Station 

(University 
of Benin) 

4 January 1992 
7 February 

2002 
3 February 

2012 
7 March 2022 

125343.54 707680.17 

-32.12°C 
 

-32.46°C 
 

-33.50°C 
34.73°C 

32.26°C 
 

32.50°C 
 

33.43°C 
34.21°C 

-0.14°C 
 

-0.04°C 
 

0.07°C 
0.52°C 

 

 
Figure 5 – Normalised difference vegetation index for 

(a) 1992, (b) 2002, (c) 2012, and (d) 2022
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Figure 6 – Fractional vegetation cover for 
(a) 1992, (b) 2002, (c) 2012, and (d) 2022 

 

 
Figure 7 – Normalised difference built-up index for 

(a) 1992, (b) 2002, (c) 2012, and (d) 2022 
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Figure 8 – Multiple correlation coefficients for the LST, FVC, and NDBI in 

(a) 1992, (b) 2002, (c) 2012, and (d) 2022 
 
 

CONCLUSIONS 
 

In this study, remote sensing and 
geographic information systems were 
utilised to analyse Landsat data to 
determine the LSTs and various land 
cover types in Benin City. The dynamics 
of the LULC between 1990 and 2020 
were demonstrated to be influenced by 
anthropogenic activities. According to 
this research, between 2000 and 2010, 
the built-up area increased from 23.40% 
of the total area to 44.38%. By 2020, the 
built-up area had climbed to 61.79%. 
This may be linked to ongoing urban 
development and restoration, which has 
been a recurrent theme in the policy 
frameworks of many administrations 
since the state of Edo was established in 
1991 as a result of the union with the 
former state of Bendel. This research has 
helped to improve our understanding of 
the thermal properties of specific land 
cover types, such as built-up regions, 
vegetation, aquatic bodies, and open 
spaces, and how they contribute to the 
overall thermal dynamics of a city. 
Urban planning, climatic mitigation 
measures, and sustainable development 
can all benefit from this knowledge. To 
reduce the UHI effect in Benin City, this 
study has suggested certain urban land 
cover measures. This research has 

offered suggestions for improving urban 
design components, green infrastructure, 
and land use policy to lower urban 
temperatures and improve thermal 
comfort. This was done by analysing the 
thermal interactions between various 
land cover types. The study's 
conclusions could aid in the creation of 
policies and urban-planning decisions 
that are supported by facts. Urban 
planners, decision-makers, and 
stakeholders can use the knowledge 
collected to learn about the thermal 
consequences of various land cover 
types and make more informed choices 
to build more environmentally friendly 
and climate-resilient cities. 
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