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ABSTRACT. Jellyfish (JF) are essential to 
marine ecosystems. However, JF that 
increases rapidly can have negative effects. 
On 3-4 August 2022, a significant JF 
(Lobonemoides robustus Stiasny, 1920) 
bloom was observed along Cox’s Bazar coast 
(from Najdirartek to Sabrang) in Bangladesh. 
The goal of the current investigation was to 
identify the fatty acids (FAs) and amino acids 
(AAs) of L. robustus. The AAs were 
determined using liquid chromatography–
tandem mass spectrometry (LC-MS/MS) 
analysis, while the FAs were determined 
using a gas chromatographic system with a 
flame ionisation detector. The most prevalent 

AA was glycine. The most common FA was 
linoleic acid (C18:3) (0.43%), followed by 
myristic acid (0.12%), cis-9-oleic acid 
(0.18%), gamma-linolenic acid (0.24%), and 
heptadecanoic acid (0.29%). Based on its AA 
and FA contents, L. robustus can be a great 
candidate for the potentially sustainable 
manufacture of nutraceutical, cosmeceutical, 
and biomedical natural products to improve 
health and well-being. In addition, the edible 
L. robustus could be exported to other
countries, thus way it can play a major role in
achieving a blue economy.
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INTRODUCTION 

The oceans are a nearly untapped 
reservoir of biochemicals that cover 70% 
of Earth’s surface. They are home to over 
194,000 known species of 
microorganisms, flora, and fauna 
(Primavera et al., 2019), but between 
2011 and 2017, only a tiny number of 
these marine creatures were utilised, 
yielding roughly 9,000 unique natural 
compounds (Romano et al., 2022). 
Among these marine organisms are JF, a 
generic term that refers to medusae of the 
phylum Cnidaria, specifically the class 
Scyphozoa. Many people value JF for 
their elegant appearance, but they are also 
feared for their severe stings. Compared 
with other taxa, cnidarians have been 
subjected to relatively little natural 
product exploitation (Das et al., 2023; 
Haider et al., 2022).  

Globally, JF populations seem to 
have risen in the last few decades. The 
overall increase and its causes are unclear 
because JF abundance is not routinely 
monitored (Brotz et al., 2012). The 
natural rhythms of JF blooms may be 
disrupted by several human-driven 
activities, including overfishing, 
pollution, and high temperatures (Haider 
et al., 2022). This could result in a 
substantial rise in JF populations in 
specific coastal areas and major marine 
ecosystems. Only a small number of 
bioactive substances have been recovered 
from oceanic cnidarians; the majority of 
natural goods are derived from benthal 
cnidarians. However, there are many 
significant potential human uses for the 
natural compounds that pelagic 
cnidarians synthesise (Fonseca et al., 
2023). Substantial scientific data 
supports the idea that JF are valuable 

bioresources for a variety of high-end 
applications such as human food; feed for 
cultivated species; and the discovery of 
untapped bioactive compounds for use in 
pharmaceutical, cosmetic, nutraceutical, 
and other biotechnological applications 
(Das and Patel, 2020; Duarte et al., 2022; 
Romano et al., 2022). 

FAs are the building blocks of 
lipids. They are divided into saturated 
fatty acids (SFAs), which lack double 
bonds between carbons, and unsaturated 
fatty acids (Ulrich et al., 2011), including 
monounsaturated fatty acids (MUFAs) 
and polyunsaturated fatty acids (PUFAs), 
classified based on the number and 
location of double bonds (Monroig et al., 
2022). FAs are essential parts of cells and 
are involved in digestion, signaling 
pathways, somatic development, and 
breeding (Yao et al., 2020). Arachidonic 
acid (ARA) (20:4(ω-6)), 
eicosapentaenoic acid (EPA) (20:5(ω-3)), 
and docosahexaenoic acid (DHA) 
(20:6(ω-3)), also referred to as ω6 and ω3 
FAs, are three very important PUFAs 
(Crawford et al., 2023). Despite 
considerable interspecific variability, 
PUFAs are often more prevalent than 
SFAs and MUFAs in the FAs 
composition of scyphomedusae (Duarte 
et al., 2022).  

AAs have numerous functions, 
including an important contribution to the 
creation of hydrogen bonds and the 
stability of the collagen triple helix 
structure and thermal behaviour (Xu et 
al., 2019). It is normal for marine 
creatures to have low levels of AAs, 
which causes collagen to denature at 
lower thermal denaturation temperatures 
(Barzideh et al., 2014). The essential 
amino acids (EAAs) are histidine (His), 
isoleucine (Ile), leucine (Leu), lysine 
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(Lys), methionine (Met), phenylalanine 
(Phe), threonine (Thr), valine (Val), and 
tryptophan (Trp); the conditionally EAAs 
comprise arginine (Arg), cystine (Cys), 
tyrosine (Tyr), glycine (Gly), proline 
(Pro), and serine (Ser); and the non-
essential acids (NEAAs) include aspartic 
acid (Asp), glutamic acid (Glu), and 
alanine (Ala) (dos Santos, 2013). 

During 3–4 August 2022, numerous 
dead JF of the species L. robustus were 
found along the shore at Cox’s Bazar, 
Bangladesh. They were carried onto the 
beach at high tide and they stuck in the 
sand deposit during low tide. According 
to Kitamura and Omori (2010), L. 
robustus are marketed as ‘white-type’ JF 
and are typically seen in huge quantities 
during certain seasons. They live along 
the Bay of Bengal (BoB) coast and may 
be harvested for export or human use. No 
scientists in Bangladesh have yet 
researched the biochemical composition 
of L. robustus. Hence, the purpose of the 
current investigation was to ascertain L. 
robustus’s AA and FA content. This 
information could increase the export of 
L. robustus and contribute to the blue
economy of Bangladesh.

MATERIALS AND METHODS 

Study area 
The current study was conducted in 

the following areas: the Sabrang coast, 
the Patuartek coast, the Shamlapur coast, 
the Bangladesh Oceanographic Research 
Institute (BORI) beach, Inani Beach, the 
Daria Nagar coast, and Bangladesh 
Fisheries Development Corporation 
(BFDC) Ghat. Each site is located along 
the Cox’s Bazar shore, which is part of 
the BoB coast (Figure 1). Samples were 

collected on 3–4 August 2022 during a 
massive L. robustus bloom. 

Sample collection and preservation 
Using hand gloves, a total of 14

L. robustus samples (average weight 30
kg) were collected from each sampling
site during the peak JF occurrence. The
samples were collected in plastic buckets
(due to their large size, only one
specimen per bucket) and cleaned onsite
with seawater. The samples were
transported to BORI’s Biological
Oceanography Laboratory after being
preserved in 10% formalin (Haider et al.,
2022). The specimens had minimal
damage and were in generally good
condition. Along with live specimens,
photographs and videos were captured in
the field for species identification. As
soon as possible after capture, specimens
were photographed to capture their
natural hue (Haider et al., 2022).

Determination of amino acids (AAs) 

Preparation of stock solution and 
intermediate stock solution 

A stock solution of 2500 µM of AAs 
was prepared in methanol and water 
(50:50, v/v), sonicated for 1 min, and 
stored at -4°C. The stock solution was 
diluted in methanol and water (50:50, 
v/v) to produce solutions containing 2.0–
100 µM of AAs. These solutions were 
filtered with a 0.232-µm syringe filter 
(PTFE). 

Sample preparation 
A 10–100 mg sample was weighed 

in a 15 ml tube. Then, 2 mL of 6 N HCl 
was added, and the mixture was 
incubated at 120°C for hours. Following 
digestion, the solvent was removed and 
the sample was resuspended in methanol 
and water (50:50, v/v; 2 mL). 
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Figure 1 – The map displays the jellyfish collection points (denoted by blue color jellyfish)
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Analytical conditions 
The liquid chromatography–tandem 

mass spectrometry (LC-MS/MS) analysis 
used an ultra-fast liquid chromatography 
system (Shimadzu Corporation, Kyoto, 
Japan) with binary pumps, an 
autosampler, an on-line degassing unit, 
and a column oven connected to a 
Shimadzu LCMS-8050 triple quadrupole 
system mass spectrometer, which has an 
electrospray ionisation (ESI) source. 
Twenty genetically encoded AAs were 
subjected to an improved gradient elution 
method using a novel combined mode. 

LC and MS conditions 
The AA analysis required an Intrada 

100 × 3 mm, 3 μm column that was kept 
at 35°C. The mobile phase comprised 
solution A (acetonitrile [can], 
tetrahydrofuran [THF], 25 mM 
NH�HCO�, and HCO2H, 9:75:16:0.3, 
v/v) and solution B (can and 100 mM 
NH�HCO�, 20:80, v/v). The elution 
programme was 0% B (0–3.0 min), 0%–
17% B (3.0–9.0 min), 17%–100% B 
(9.0–16.0 min), 100% B (16.0–22.0 min), 
and 0% B (22.0 min) at a flow rate of 0.6 
mL/min. The chromatographic injection 
volume was 10 µL, and the AAs were 
retained for approximately 22 min. 

Table 1 presents the MS acquisition 
conditions, and Table 2 presents the 
multiple reaction monitoring (MRM) 
transition events of the AAs. 

Determination of fatty acids (FAs) 
A Shimadzu GC 2010 Plus gas 

chromatographic apparatus with a flame 
ionisation detector was utilised to identify 
FAs. One hundred milligrams of C6H6O3 
and 2 mL of ethanol were added to a flask 
containing 100–200 mg of material and 
thoroughly mixed. Then, 10 mL of 8.3 M 

HCl was added and the contents were 
stirred. The flask was incubated in a 
water bath heated to 70–80°C for 40 min, 
with gentle shaking every 10 min. Then, 
the flask was allowed to cool to ambient 
temperature (20–25°C). While stirring 
carefully, enough ethanol was added to 
fill the flask’s bottom reservoir.  

After adding 20 mL of diethyl 
ether and 20 mL of petroleum ether, the 
flask was centrifuged at 600 rpm for 5 
min (if a centrifuge is not available, then 
the contents should be allowed to settle 
for at least 1 h until the upper layer is 
transparent). In a steam bath, the top layer 
was removed and the ether was evaporated. 

After dissolving the residue in 2–3 
mL of CHCl3 and 2–3 mL of (C2H5)2O, 
the mixture was shifted to a 3-dram glass 
vial and dried in a water bath at 40°C. 
Then, 1 mL of toluene and 2 mL of 7% 
BF3 methanol were added. The vial was 
closed with a screwcap top with a 
teflon/silicone septum. The vial was 
heated in an oven to 100˚C for 45 min, 
with gentle shaking every 10 min. The 
vial was cooled to room temperature (20–
25°C). After adding 1 mL hexane, 5 mL 
water, and 1 g Na2SO4, the vial was 
shaken. Then, the upper layer was 
transferred to a new vial containing 1 g of 
Na2SO4 for gas chromatography. 

RESULTS AND DISCUSSION 

JF represents a vital part of marine 
food webs. Although their function as 
consumers has long been recognised, 
they are also consumed by a diverse range 
of species (Schaub et al., 2023). 

Amino acids (AAs) in L. robustus 
In general, L. robustus had low EAA 

levels. The most abundant EAA is Gly 
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(Figure 2), followed by Glu, Asp, Thr, 
and Pro. The results of this investigation 
are consistent with those of Khong et al. 
(2016) and Hsieh et al. (2001). According 
to Khong et al. (2016), JF, regardless of 
the body area, contains roughly 33% 
EAAs, 46% conditionally EAAs, and 
21% NEAAs. Kogovšek et al. (2014) 
reported that in JF, Asp, Lys, Arg, Gly, 
and Glu are the most abundant AAs per 
unit of dry mass, accounting for over half 
of the entire pool of AAs.  

Consistent with our findings, Gly is 
the most prevalent AA in scyphomedusae. 

This EAA is one of the major structural 
units of collagen (Merquiol et al., 2019). 
Cheng et al. (2017) and 
Kittiphattanabawon et al. (2005) showed 
that Gly is the most prevalent AA in JF 
collagen. Although there were no 
statistically significant differences, 
Wakabayashi et al. (2016) reported a 
higher EAA content in Aurelia aurita 
compared with Chrysaora pacifica. Pro, 
Ala, Leu, Phe, Ile, and Val are other 
EAAs that are present in good 
concentrations (Table 3). 

 

Table 1 – The mass spectrometry acquisition conditions 

Parameters State 

Run time 22 minutes 
Ion polarity Positive ion mode 
Ion source Atmospheric pressure electrospray ionisation 

Capillary voltage (kV) 4.0 
Block temperature 400°C 

Desolvation line temperature 300°C 
CID gas Argon (270 kPa) 

Nebulising gas flow N2, 1.5 L/min 
Drying gas flow N2, 15.0 L/min 

Heating gas flow 10 L/min 
Interface temperature 300°C 

Table 2 – The multiple reaction monitoring (MRM) transition events of the amino acids 

Amino acid Type m/z 
Retention 
time (min) 

MRM event 

Serine Target 106.10>60.20 1.707 7:MRM(+)
Glycine Target 76.00>30.00 1.732 16:MRM(+)

Glutamine Target 147.00>84.10 1.723 6:MRM(+)
Lysine Target 147.00>84.10 1.731 15:MRM(+)

Aspartic acid Target 134.10>73.90 1.720 3:MRM(+) 
Histidine Target 156.10>110.10 1.761 11:MRM(+)

Threonine Target 120.10>74.00 1.758 8:MRM(+)
Alanine Target 90.10>44.10 1.785 1:MRM(+)
Arginine Target 175.10>70.10 1.786 2:MRM(+)

Glutamic acid Target 148.10>84.10 1.804 4:MRM(+)
Proline Target 116.10>70.10 1.934 17:MRM(+)
Valine Target 118.20>72.00 2.177 10:MRM(+)

Methionine Target 150.10>56.10 2.380 13:MRM(+)
Leucine Target 132.10>86.30 2.979 12:MRM(+)

Isoleucine Target 132.10>86.30 3.180 12:MRM(+)
Tyrosine Target 182.10>136.20 3.244 9:MRM(+)

Phenylalanine Target 166.10>120.10 4.583 14:MRM(+) 
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Figure 2 –  Amino acid percentages in Lobonemoides robustus 

Compared with Semaeostomeae, 
Rhizostomeae have more EAAs 
(Merquiol et al., 2019). Only Cotylorhiza 
tuberculata and Rhizostoma pulmo 
contain significant levels of His; in other 
scyphomedusae, this EAA is either 
absent or very low (Table 3). L. robustus 
also contains detectable amounts of Thr, 
Arg, Ser, Glu, and Lys (Figure 2). 

Compared with the AA composition 
of rat tail collagen, JF had a low Pro 
content and higher Glu and Ala contents 
(Derkus et al., 2016). Rhopilema 
hispidum gelatine has notably high Gly 
(18.90%), Pro (8.15%), and 
hydroxyproline (13.93%) contents (Table 
3) (Cho et al., 2014). Chrysaora sp. has a
low concentration of Pro and
hydroxyproline (Barzideh et al., 2014).
According to De Rinaldis et al. (2021),
the most prevalent AAs in Cassiopea
andromeda are Glu, Gln, and Gly. This
species contains 15.68 g of these AAs per
100 g lyophilised sample, more than
twice as much as R. pulmo (6.1 ± 0.09 g

per 100 g lyophilised sample) and 
Pelagia noctiluca (8.1 ± 0.3 g per 100 g 
lyophilised sample) samples analysed in 
parallel. De Rinaldis et al. (2021) also 
reported high levels of Ala and taurine in 
C. andromeda, namely 0.96 g per 100 g
dry weight. The contents of the main AAs
of wild JF gonad and cultured JF gonad –
Glu, Lys, Gly, Asp, and Leu – are 51.47%
and 52.52% of the total AA content,
respectively. Asp and Glu are often
present in enzyme-active sites and are
crucial for preserving the solubility and
ionic nature of proteins (Yu et al., 2014).
Stabili et al. (2018) found free AAs in a
gonadal extract from R. pulmo. The
ovaries of this species may provide an
abundant supply of AAs for
pharmacological and nutraceutical
purposes. Additionally, the ovaries may
provide proteins needed for the creation
of novel nutritional supplements intended
to sustain fish.
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Fatty acids (FAs) in L. robustus 

FAs are components of membranes 
and cell structures, but they also 
accumulate as energy storage units in 
plants and animals. They can be absorbed 
from food or biosynthesised by the 
organism (Saha and Pathak, 2021). FAs 
do not decompose during digestion, in 
contrast to other complex compounds; 
rather, they stay mostly unaltered or 
barely altered. Because they often do not 
change as reservoirs during normal cell 
metabolism (Elsamadony et al., 2021), 
they are regarded as traditional indicators 
that are used in environmental research to 
clarify the relationships between 
organisms in the food chain and to 
ascertain the movement of organic matter 
from lower trophic levels to higher 
trophic levels (De Troch et al., 2012). In 
the present study, C18:3 was the most 
prevalent FA (0.43%) in L. robustus, 
followed by heptadecanoic acid (0.29%), 
gamma-linolenic acid (0.24%), cis-9-
oleic acid (0.18%), decanoic acid 
(0.13%), and myristic acid (0.12%) 
(Figure 3). 

According to De Renaldis et al. 
(2021), PUFAs and SFAs make up 
roughly 48% and 44% of all FAs in C. 
andromeda, respectively, but MUFAs 
make up only 8% of all FAs. In terms of 
MUFA content, the hydroalcoholic 
extract and the entire JF extract have 
similar levels of isooleic acid, oleic acid, 
and palmitoleic acid. Svetashev (2019) 
recorded different types of omega-3 FAs 
in A. aurita and Rhopilema esculentum, 
which are the principal PUFAs; R. 
esculentum contains 1.6% of C26 
PUFAs. 

Ying et al. (2012) reported high 
20:4(ω-6) concentrations (>10%) and 

ratios of 20:5(ω-3)/20:6(ω-3) > 1 in JF. 
The month–diameter interaction has a 
substantial impact on the FA profile of 
Aurelia labiata, meaning that changes in 
the FA profile with diameter vary from 
month to month (Schaub et al., 2023). 
According to Wakabatake et al. (2016), 
of the five essential fatty acids, 
anandamide and 20:6(ω-3) are more 
abundant in C. pacifica than in A. aurita, 
while 20:5(ω-3) is more abundant in A. 
aurita than in C. pacifica. According to 
Leone et al. (2015), the zooxanthellate JF 
Cotylorhiza tuberculate has a 
considerably higher presence of ω3 and 
ω6 PUFAs. With a high percentage 
(62.7%) of unsaturated FAs, the FA 
profile of A. aurita from the Atlantic 
Ocean differs significantly from that of A. 
aurita from the Aegean Sea (Kariotoglou 
and Mastronicolis, 2001). A. aurita’s FA 
profile exhibits notable seasonal 
fluctuation, with mature medusae having 
the highest FA levels. Furthermore, the 
moon jelly contains multiple critical FAs 
– 20:4(ω-6), 20:5(ω-3), and 20:6(ω-3) –
likely to support its essential physiological 

activities (Stenvers et al., 2020).
The majority of FAs in Catostylus 

tagi are PUFAs, followed by MUFAs and 
SFAs. According to Moris et al. (2009), 
there is a considerable increase in the 
concentration of ARA, EPA, 20:4ω6, 
DHA (about 32%) in the oral arms and 
umbrellas of JF (mostly 20:5ω3). There 
have been similar findings in Rhizostoma 
luteum (Prieto et al., 2018), where almost 
half of the FAs are PUFAs, mainly ω3 
C18:3, essential ω6 C18:2, and ω6 C20:4 
acids. Stabili et al. (2018) described the 
presence of PUFAs, diunsaturated fatty 
acids (DUFAs), MUFAs, and SFAs in the 
gonads of R. pulmo. 

Islam et al. 
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Figure 3 – Fatty acid contents in Lobonemoides robustus 

While the overall fatty acid 
concentration of P. noctiluca changes 
according to the body area, MUFAs and 
PUFAs make up 15% and 14%–19% of 
the total, respectively, and there are no 
sex differences (Costa et al., 2019). In 
comparison, Leone et al. (2015) 
discovered that in JF, SFAs (55%–70%) 
dominate, followed by PUFAs (25%–
30%) and MUFAs (4%–15%). 

The gonads of R. pulmo have ω3 
PUFAs, primarily DHA and EPA, which 
suggests that these molecules could be 
extracted from them and used in the 
pharmaceutical industry (Stabili et al., 
2018). DHA and EPA have anti-
inflammatory and antioxidant properties 
and may be used in treatment plans for 
mental health issues and memory 

impairments brought on by 
neuroinflammation (Apetz et al., 2014). 
Additionally, considering that fish diets 
are typically supplemented with extra 
EPA and DHA, the gonads of R. pulmo 
may provide these necessary FAs that 
could be extracted and then added to the 
fish feed (Stabili et al., 2018). 

According to Khong et al. (2016), 
EAAs, conditionally EAAs, and non-
EAAs account for 33%, 46%, and 21% of 
the total amino acids (TAAs), 
respectively, in JF species. According to 
Yu et al. (2014), the TAAs in R. 
esculentum gonads are made up of 40.70–
42.89% EAAs, 47.39%–50.12% taste 
AAs, and 66.55%–66.92% medicinal 
AAs. According to Leone et al. (2015), 
the proportion of EAAs of the TAA 
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content in Aurelia sp., R. pulmo, and C. 
tuberculate is 31.4%, 50.8%, and 53.6%, 
respectively. 

These findings suggest that JF may 
find usage as a functional food and 
dietary supplement (Raposo et al., 2022). 

CONCLUSIONS 

The search for substitute sources of 
bioactive chemicals to take the place of 
overfished resources is a pressing need 
for modern society. JF are important 
sources of AAs and FAs. In the present 
study, we found that L. robustus is rich in 
Gly. The most common FAs are linoleic 
acid, myristic acid, cis-9-oleic acid, 
gamma-linolenic acid, and heptadecanoic 
acid. Our data indicate that L. robustus 
could be a sustainable source of AAs and 
FAs for use in manufacturing natural 
nutraceutical, cosmeceutical, and 
biomedical products. Moreover, in 
Southeast Asia, L. robustus is commonly 
used for food. The commercially valuable 
L. robustus could be exported to other
countries and contribute to a blue
economy.
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